ABSTRACT
The aim of this paper is to investigate class of continuity named $\omega'\beta$ continuity. Some characterizations and preservation theorems are investigated. Relationship between lindelof space and $\omega'\beta$ continuity is studied. Furthermore some basic properties of $\omega'\beta$ open and closed sets are investigated.

KEYWORDS: $\omega'\beta$ open, $\omega'\beta$ irresolute, β-Lindelof.

INTRODUCTION
In both pure and applied domains, General topology has great significance. It plays a very significant role in data mining [15]. If one has to produce knowledge from data in any real life field, Information systems can prove very useful. As a matter of fact, topological structure on the collection of data are quite suitable. The influence of general topological spaces can be observed in computer science. Apart from that we see its use in computational topology for geometric and molecular design [13].

Many Mathematicians have researched and studied continuity on topological spaces, as significant and fundamental subject in the study of topology. Mathematicians have introduced various forms of continuity. These continuities involve different kinds of generalized sets such as b-open [3], β – open [1], ω – open [6], ω' – open [4] sets and many more.

The purpose of the paper is to investigate class of $\omega'\beta$ – continuous functions using $\omega'\beta$ – open sets.

Throughout the present paper, a space means topological space on which there are no separation axioms assumed. Exceptions are explicitly stated. Let A be a subset of a space (X, τ). The closure of A and interior of A in (X, τ) are denoted by $Int(A)$ and $cl(A)$, respectively.

Definition 1.1 A subset A of a space (X, τ) is said to be
(1) b – open [3], $A \subset Int(cl(A)) \cup cl(Int(A))$
(2) β – open [1] if, $A \subset cl(Int(cl(A)))$
(3) ω – open [6]. set if for every $x \in A$ there exists an ω – open set U containing x such that $U - A$ is countable.
(4) $\omega\beta$ – open [2] set if for every $x \in A$ there exists an β – open set U containing x such that $U - A$ is countable.
We use $\omega \beta O(X, \tau)$ (resp., $\beta O(X, \tau)$, $\omega O(X, \tau)$, $b O(X, \tau)$) to denote the family of all $\omega \beta$—open, (resp. β—open, ω—open, b—open) subsets of (X, τ).

Definition 1.2 A function $f : (X, \tau) \to (Y, \sigma)$ is called ω—continuous [7] if for every $x \in X$ and each open set V in (Y, σ), containing $f(x)$ there exists an $\omega O(X, \tau)$ set U containing x such that $f(U) \subseteq V$.

Definition 1.3 $\omega' \beta$—open set if for every $x \in A$ there exists an β—open set U containing x such that U—$cl(A)$ is countable.

Lemma 1.4 Let (X, τ) be a topological space:

i. The arbitrary union of $\omega' \beta O(X, \tau)$ sets is $\omega' \beta O(X, \tau)$.

ii. The intersection of an $\omega' \beta O(X, \tau)$ set and open set is $\omega' \beta O(X, \tau)$.

Theorem 1.5 Let (Y, τ_Y) be a subspace of (X, τ), which is $\beta O(X, \tau)$. Let $A \subset Y$, then $A \in \omega' \beta O(X, \tau)$ if and only if $A \in \omega' \beta O(Y, \tau_Y)$.

Theorem 1.6 Let A be a subset of a topological space (X, τ). Then $x \in \omega' \beta cl(A)$ if and only if $A \cap U \neq \emptyset$, for every $\omega' \beta O(X, \tau)$ set U containing x.

Theorem 1.7 [5] If $f : (X, \tau) \to (Y, \sigma)$ is an open continuous function, then $f^{-1}(cl(B)) = cl(f^{-1}(B))$ for every subset B of Y.

CONTINUOUS FUNCTIONS

Definition 2.1 A function $f : (X, \tau) \to (Y, \sigma)$ is called $\omega' \beta$—continuous at a point $x \in X$, if for every open set $V \in \sigma$ containing $f(x)$ there exists an $U \in \omega' \beta O(X, \tau)$ set containing x such that $f(U) \subseteq V$. If f is $\omega' \beta$—continuous at each point of X then f is said to be $\omega' \beta$—continuous on X.

Definition 2.2 Let (X, τ) be any space, a set $A \subset X$ is said to be $\omega' \beta$—neighbourhood of a point $x \in X$ if and only if there exists a $U \in \omega' \beta O(X, \tau)$ set containing x such that $U \subset A$.

Definition 2.3. The following are equivalent for a function $f : (X, \tau) \to (Y, \sigma)$, where X and Y are topological space:

i. The function f is $\omega' \beta$—continuous.

ii. For each open set $V \subset Y$, $f^{-1}(V) \in \omega' \beta O(X, \tau)$.

iii. For each $x \in X$, the inverse of every neighbourhood of $f(x)$ is an $\omega' \beta$—neighbourhood of x.

iv. For each $x \in X$ and each neighbourhood V of $f(x)$, there is an $\omega' \beta$—neighbourhood U of x such that $f(U) \subset V$.

v. For each closed set B of Y $f^{-1}(B)$ is $\omega' \beta$—closed in X.

vi. For each subset A of X, $f(\omega' \beta cl(A)) \subset cl(f(A))$.

vii. For each subset B of Y, $\omega' \beta cl(f^{-1}(B)) \subset f^{-1}(cl(B))$.

Proof. ($i \to ii$) Let V be open in Y and $x \in f^{-1}(V)$ then $f(x) \in V$, so by (i), there exists an $\omega' \beta O(X, \tau)$ set U_x in X containing x such that $f(U_x) \subset V$. Then $x \in U_x \subset f^{-1}(V)$ and hence
By Lemma 1.4(i), \(f^{-1}(V) = \bigcup_{x \in f^{-1}(V)} U_x \). By Lemma 1.4(i), \(f^{-1}(V) \in \omega^1\beta O(X, \tau) \), which implies that \(f \) is \(\omega^1\beta - \)continuous.

(ii \(\rightarrow \) iii) For \(x \in X \), let \(V \) be the neighborhood of \(f(x) \), then \(f(x) \in W \subseteq V \), where \(W \) is open in \(Y \). By (ii), \(f^{-1}(W) \in \omega^1\beta O(X, \tau) \), and \(x \in f^{-1}(W) \subseteq f^{-1}(V) \). Then by Definition 2.2, \(f^{-1}(V) \) is \(\omega^1\beta - \)neighborhood of \(x \).

(iii \(\rightarrow \) iv). For \(x \in X \) and \(V \) be a neighborhood of \(f(x) \). Then \(U = f^{-1}(V) \) is \(\omega^1\beta - \)neighborhood of \(x \) and \(f(U) = f(f^{-1}(V)) \subseteq V \).

(iv \(\rightarrow \) v). For any \(x \in X - f^{-1}(B), f(x) \in Y - B \). Since \(B \) is closed, \(Y - B \) is neighborhood of \(f(x) \), hence there is a \(\omega^1\beta - \)neighborhood \(U \) of \(x \) such that \(f(U) \subseteq Y - B \), there exists an \(\omega^1\beta O(X, \tau) \) set \(U_x \) in \(X \) containing \(x \) and \(U_x \subseteq U \subseteq X - f^{-1}(B) \), take \((X - f^{-1}(B)) = \bigcup_{x \in f^{-1}(Y - B)} U_x \). By Lemma 1.4(i), the set \((X - f^{-1}(B)) \in \omega^1\beta O(X, \tau) \), which implies \(f^{-1}(B) \) is \(\omega^1\beta C(X, \tau) \).

(v \(\rightarrow \) vi). Let \(A \subseteq X \). Since \(\text{cl}(f(A)) \) is a closed set in \(Y \) by (vi), \(f^{-1} \text{cl}(f(A)) \) is \(\omega^1\beta C(X, \tau) \) set containing \(A \). Then \(f(\omega^1\beta \text{cl}(A)) \subseteq \text{cl}(f(A)) \).

(vi \(\rightarrow \) vii). Let \(B \subseteq Y \). By (vi), \(f(\omega^1\beta \text{cl}(f^{-1}(B))) \subseteq \text{cl}(B) \), so \(\omega^1\beta \text{cl}(f^{-1}(B)) \subseteq f^{-1}(\text{cl}(B)) \).

(vii \(\rightarrow \) i). Suppose that \(f \) is not \(\omega^1\beta - \)continuous. So there exist \(x \in X \) and \(V \in \sigma \) with \(f(x) \in V \) such that for all \(\omega^1\beta O(X, \tau) \) sets \(U \) with \(x \in U \) and \(f(U) \not\subseteq V \) i.e. \(f(U) \cap (Y - V) \neq \emptyset \). Therefore, \(x \in \omega^1\beta \text{cl}(f^{-1}(Y - V)) \) by Theorem 1.6, and so by (vii), \(f(x) \in \text{cl}(Y - V) \), thus \(V \cap (Y - V) \neq \emptyset \), for all open sets \(V \) in \((Y, \sigma) \) containing \(f(x) \), a contradiction. Therefore, \(f \) is \(\omega^1\beta - \)continuous.

Definition 2.4. For any subset \(A \) of a topological space \((X, \tau) \) the frontier of \(A \), denoted by \(\omega^1\beta \text{fr}(A) \), is defined as \(\omega^1\beta \text{cl}(A) \cap \omega^1\beta \text{cl}(X - A) \).

Theorem 2.5. Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be a function.

Then \(X - \omega^1\beta \text{c}(f) = \bigcup \{\omega^1\beta \text{fr}(f^{-1}(V)) : V \in \sigma, f(x) \in Y, x \in X \} \) where \(\omega^1\beta \text{c}(f) \) denotes the set of points at which \(f \) is \(\omega^1\beta - \)continuous.

Proof. Let \(x \in X - \omega^1\beta \text{c}(f) \). Then for every \(\omega^1\beta O(X, \tau) \) set \(U \) containing \(x \) there exists open sets \(V \) in \((Y, \sigma) \) containing \(f(x) \) such \(f(U) \not\subseteq V \). Hence \(U \cap (X - f^{-1}(V)) \neq \emptyset \) for every \(\omega^1\beta O(X, \tau) \) set \(U \) containing \(x \). Therefore, \(x \in \omega^1\beta \text{cl}(X - f^{-1}(V)) \) by Theorem 1.6. Then \(x \in f^{-1}(V) \cap \omega^1\beta \text{cl}(X - f^{-1}(V)) \subseteq \omega^1\beta \text{fr}(f^{-1}(V)). \) Hence, \(X - \omega^1\beta \text{c}(f) \subseteq \bigcup \{\omega^1\beta \text{fr}(f^{-1}(V)) : V \in \sigma, f(x) \in Y, x \in X \}. \) Conversely, let \(x \in X - \omega^1\beta \text{c}(f) \). Then for each open set \(V \) in \((Y, \sigma) \) containing \(f(x), f^{-1}(V) \) is \(\omega^1\beta O(X, \tau) \) containing \(x \), thus for every \(V \in \sigma \) containing \(f(x), x \in \omega^1\beta \text{Int}(f^{-1}(V)) \) and hence \(x \in \omega^1\beta \text{fr}(f^{-1}(V)). \) So \(\bigcup \{\omega^1\beta \text{fr}(f^{-1}(V)) : V \in \sigma, f(x) \in Y, x \in X \} \subseteq X - \omega^1\beta \text{c}(f) \).

Corollary 2.6 A function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is \(\omega^1\beta - \)continuous if and only if \(f^{-1}(\text{int}(G)) \subseteq \omega^1\beta \text{int}(f^{-1}(G)) \), for any subset \(G \) of \(Y \).
Proof. Let $G \subseteq Y$. Since f is $\omega'\beta$ - continuous, $f^{-1}(\text{int}(G)) \subseteq \omega'\beta O(X, \tau)$. As $f^{-1}(\text{int}(G)) \subseteq f^{-1}(G)$, so $f^{-1}(\text{int}(G)) \subseteq \omega'\beta\text{ int}(f^{-1}(G))$.

Now, if $x \in X$ and $V \in \sigma$ with $f(x) \in V$. Then $x \in f^{-1}(V)$ and so $x \in \omega'\beta\text{ int}(f^{-1}(V))$. There exists $U \in \omega'\beta\ O(X, \tau)$ such that $x \in U \subseteq f^{-1}(V)$. Hence $f(x) \in f(U) \subseteq V$ and hence the result.

Further if X is a countable set then every function $f : (X, \tau) \to (Y, \sigma)$ is $\omega'\beta$ - continuous. The following diagram follows immediately from the definitions in which none of the implications is reversible.

$$
\begin{array}{c}
\text{continuous} \\
\downarrow \\
\omega - \text{continuous} \\
\downarrow \\
\omega'\beta - \text{continuous}
\end{array}
\uparrow
\begin{array}{c}
b - \text{continuous} \\
\downarrow \\
\omega b - \text{continuous} \\
\downarrow \\
\omega'\beta - \text{continuous}
\end{array}
$$

Example 2.7 Let $X = \{1, 2, 3\}$ with the topology $\tau = \{X, \varnothing, \{1\}, \{2, 3\}, \{1, 2\}\}$ and $Y = \{a, b\}$ with the topology $\sigma = \{\varnothing, Y, \{a\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the function defined by

$$f(x) = \begin{cases}
 b & x = 1, 2 \\
 a & x = 3
\end{cases}$$

Then f is not β - continuous, but it can be easily seen that f is $\omega'\beta$ - continuous.

Example 2.8 Let $X = \mathbb{R}$ with the topology $\tau = \tau_u$ and $Y = \{a, b\}$ with the topology $\sigma = \{\varnothing, Y, \{a\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the function defined by

$$f(x) = \begin{cases}
 a & x \in [0, 1) \cap \mathbb{R} - \mathbb{Q} \\
 b & x \in [0, 1) \cap \mathbb{Q}
\end{cases}$$

Then f is $\omega'\beta$ - continuous, but it is not $\omega'b$ - continuous.

Proposition 2.9. If $f : (X, \tau) \to (Y, \sigma)$ is an $\omega'\beta$ - continuous function X, then the restriction $f|_A : (A, \tau_A) \to (Y, \sigma)$ is $\omega'\beta$ - continuous provided A is an open set in X.

Proof. Since f is an $\omega'\beta$ - continuous function, for any open set $V \in \sigma$, $f^{-1}(V) \subseteq \omega'\beta O(X, \tau)$. Hence by Lemma 1.4 (ii), $f^{-1}(V) \cap A \subseteq \omega'\beta O(X, \tau)$ since A is an open set. Therefore, by Theorem 1.5, $(f|_A)^{-1}(V) = f^{-1}(V) \cap A \subseteq \omega'\beta O(A, \tau_A)$ sets, which implies that $f|_A$ is $\omega'\beta$ - continuous function.

Example 2.10 Let $X = \mathbb{R}$ with the topology $\tau = \tau_u$ and $Y = \{0, 1\}$ with the topology $\sigma = \{\varnothing, Y, \{1\}\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the function defined by

$$f(x) = \begin{cases}
 1 & x = \sqrt{2} \\
 0 & x \in \mathbb{Q}
\end{cases}$$

It can be easily seen that f is $\omega'\beta$ - continuous. We take $A = \mathbb{R} - \mathbb{Q}$. Then $A \in \omega'\ O(X, \tau)$ and $f|_A$ is not $\omega'\beta$ - continuous since $f|_A^{-1}(\{1\}) = \{\sqrt{2}\} \not\subseteq \omega'\beta O(A, \tau_A)$.

Definition 2.11 A cover $U = \{U_\alpha : \alpha \in \Delta\}$ of subset of X is called a $\beta O(X, \tau)$ cover if U_α is $\beta O(X, \tau)$ for each $\alpha \in \Delta$.
Proposition 2.12 Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be any function and \(\Lambda = \{ A_\alpha : \alpha \in \Delta \} \) be a cover of \(X \) by \(\beta \mathcal{O}(X, \tau) \). If the restriction, \(f \big|_{A_\alpha} : (A_\alpha, \tau_{A_\alpha}) \rightarrow (Y, \sigma) \) of \(f \) is \(\omega' \beta - \text{continuous} \) for each \(\alpha \in \Delta \), then \(f \) is \(\omega' \beta - \text{continuous} \).

Proof. Let \(V \in Y \) Since \(f \big|_{A_\alpha} \) is \(\omega' \beta - \text{continuous} \), then for each \(\alpha \in \Delta \), we have \((f \big|_{A_\alpha})^{-1}(V) = f^{-1}(V) \bigcap A_\alpha \in \omega' \mathcal{B}(A_\alpha, \tau_{A_\alpha}) \). So by Theorem 1.5, \(f^{-1}(V) \bigcap A_\alpha \in \omega' \mathcal{B}(X, \tau) \) for each \(\alpha \in \Delta \). Take \(f^{-1}(V) = \bigcup_{\alpha \in \Delta} f^{-1}(V) \bigcap A_\alpha \). By Lemma 1.4 (i) \(f^{-1}(V) \in \omega' \mathcal{B}(X, \tau) \).

Corollary 2.13 Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be any function and \(U = \{ A_\alpha : \alpha \in \Delta \} \) a cover of \(X \). If the restriction, \(f \big|_{A_\alpha} : (A_\alpha, \tau_{A_\alpha}) \rightarrow (Y, \sigma) \) is \(\omega' \beta - \text{continuous} \) for each \(\alpha \in \Delta \), then \(f \) is \(\omega' \beta - \text{continuous} \).

Remark 2.14 The composition \(g \circ f : (X, \tau) \rightarrow (Z, \rho) \) of a continuous function \(f : (X, \tau) \rightarrow (Y, \sigma) \) and an \(\omega' \beta - \text{continuous} \) function \(g : (Y, \sigma) \rightarrow (Z, \rho) \) is not necessarily \(\omega' \beta - \text{continuous} \) function as the following example shows. Thus, the composition of \(\omega' \beta - \text{continuous} \) functions need not be \(\omega' \beta - \text{continuous} \).

Example 2.15. Let \(X = \mathbb{R} \) with the topology \(\tau = \{ R, \phi, R - Q, \} \), \(Y = \{ 1, 2 \} \) with the topology \(\sigma = \{ \phi, Y, \{ 1 \} \} \) and \(Z = \{ a, b \} \) with the topology \(\rho = \{ \phi, Z, \{ a \} \} \). Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be the function defined by
\[
f(x) = \begin{cases}
1 & x \in \mathbb{R} - Q \\
2 & x \in Q
\end{cases}
\]
and \(g : (X, \sigma) \rightarrow (Y, \rho) \) be the function defined by
\[
g(x) = \begin{cases}
a & x = 2 \\
b & x = 1
\end{cases}
\]
Then \(f \) is continuous (hence \(\omega' \beta - \text{continuous} \)) and \(g \) is \(\omega' \beta - \text{continuous} \). However \(g \circ f \) is not \(\omega' \beta - \text{continuous} \) because \((g \circ f)^{-1}(\{ a \}) = Q \notin \omega' \mathcal{B}(X, \tau) \).

Proposition 2.16. The composition \(g \circ f : (X, \tau) \rightarrow (Z, \rho) \) is \(\omega' \beta - \text{continuous} \).

If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is \(\omega' \beta - \text{continuous} \) and \(g : (Y, \sigma) \rightarrow (Z, \rho) \) is continuous.

Proof. Let \(x \in X \) and \(V \in \rho \) with \((g \circ f)(x) \in V \), since \(g \) is continuous, there exists open sets \(W \) with \(f(x) \in W \) and \(g(W) \subseteq V \). Moreover \(f \) is \(\omega' \beta - \text{continuous} \), there exists open \(U \in \omega' \mathcal{B}(X, \tau) \) containing \(x \) such that \(f(U) \subseteq W \). Now \((g \circ f)(U) \subseteq g(W) \subseteq V \). Hence the result.

We note that this result fails if \(g \) is assumed to be only \(\omega - \text{continuous} \) or \(\beta - \text{continuous} \) as it is shown in the next example.

Example 2.17. Consider \(X = \mathbb{R} \) with the topology \(\tau = \{ R, \phi, R - Q, \} \), \(Y = \{ a, b, c \} \) with the topology \(\sigma = \{ \phi, Y, \{ a \}, \{ b \}, \{ a, b \} \} \) and \(Z = \{ 1, 2, 3, 4 \} \) with the topology \(\rho = \{ \phi, Z, \{ 1 \}, \{ 1,2 \}, \{ 1,2,3 \} \} \).

Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be the function defined by
\[
f(x) = \begin{cases}
a & x \in \mathbb{R} - Q \\
b & x \in Q
\end{cases}
\]
and \(g : (Y, \sigma) \rightarrow (Z, \rho) \) be the function define by
\[
\begin{align*}
g(x) &= \begin{cases}
1 & x = a \\
3 & x = b \\
2 & x = c
\end{cases}
\end{align*}
\]
Then \(f \) is \(\omega'\beta - \text{continuous} \), \(g \) is \(\omega'\beta - \text{continuous} \) and \(\beta - \text{continuous} \) functions but \(g \circ f \) is not \(\omega'\beta - \text{continuous} \) since \((g \circ f)^{-1}(\{3\}) = \emptyset \in \omega'\beta O(X, \tau)\).

Corollary 2.18 Let \(f : (X, \tau) \rightarrow \prod_{\alpha \in \Delta} X_{\alpha} \) is an \(\omega'\beta - \text{continuous} \) function from a space \((X, \tau) \) into a product space \(\prod_{\alpha \in \Delta} X_{\alpha} \) then \(P_{\alpha} \circ f \) is \(\omega'\beta - \text{continuous} \) for each \(\alpha \in \Delta \), where \(P_{\alpha} \) is the projection function from the product space \(\prod_{\alpha \in \Delta} X_{\alpha} \) onto the space \(X_{\alpha} \) for each \(\alpha \in \Delta \).

Theorem 2.19. Let \(X \) and \(Y \) be a topological spaces, let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be a function and \(g : (X \times Y, \tau \times \sigma) \rightarrow (X \times Y, \tau \times \sigma) \) be the graph function of \(f \) given by \(g(x) = (x, f(x)) \) for every point \(x \in X \). Then \(g \) is \(\omega'\beta - \text{continuous} \).

Proof. Suppose that \(g \) is \(\omega'\beta - \text{continuous} \). Now \(f = P_Y \circ g \) where \(P_Y : X \times Y \rightarrow Y \), then \(f \) is \(\omega'\beta - \text{continuous} \) by Corollary 2.18. Conversely, assume that \(f \) is \(\omega'\beta - \text{continuous} \). Let \(x \in X \) and \(W \) be any open set in \(X \times Y \) containing \(g(x) \). Then there exist open sets \(U \subset X \) and \(V \subset Y \) such that \(g(x) \in U \times V \subset W \). Since \(f \) is \(\omega'\beta - \text{continuous} \), there exists \(U_1 \in \omega'\beta O(X, \tau) \) containing \(x \) and \(f(U_1) \subset V \). Take \(H = U \cap U_1 \). Then \(H \in \omega'\beta O(X, \tau) \) by Lemma 1.4 (ii), such that \(x \in \text{Handf}(H) \subset V \).

Therefore we have \(g(H) \subset U \times V \subset W \). Thus \(g \) is \(\omega'\beta - \text{continuous} \).

Definition 2.20. An function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is called pre-semi-preopen if the image of each semi-preopen set in \(X \) is a semi-preopen set in \(Y \).

Theorem 2.21. If \(g \circ f : (X, \tau) \rightarrow (Z, \rho) \) is \(\omega\beta - \text{continuous} \) and \(f : (X, \tau) \rightarrow (Y, \sigma) \) is pre-semi-preopen surjection, then \(g : (Y, \sigma) \rightarrow (Z, \rho) \) is \(\omega\beta - \text{continuous} \).

Proof. we first prove that if \(f : (X, \tau) \rightarrow (Y, \sigma) \) is pre-semi-preopen function and \(U \in \omega\beta O(X, \tau) \), then \(f(U) \in \omega\beta O(Y, \sigma) \).

So let \(U \in \omega\beta O(X, \tau) \) then for all \(x \in U \) there exists \(\beta O(X, \tau) \) in \((X, \tau) \) containing \(x \) and \(U = \text{cl}(U) \subset C \) where \(C \) is a countable set. Thus \(f(U_1) = \text{cl}(f(U)) \subset f(C) \) where \(f(C) \) is a countable set. This implies \(f(U) \in \omega\beta O(Y, \sigma) \). Now, Let \(y \in Y \) and let \(V \in \rho \) with \(g(y) \in V \). Choose \(x \in X \) such that \(f(x) = y \). Since \(g \circ f \) is \(\omega\beta - \text{continuous} \) there exists \(U \in \omega\beta O(X, \tau) \) with \(x \in U \) and \(g(f(U)) \subset V \). But \(f \) is pre-semi-preopen function therefore, by assumption, \(f(U) \in \omega\beta O(Y, \sigma) \) with \(f(x) \in f(U) \). So we get the result.

Corollary 2.22. Let \(f_{\alpha} : (X_{\alpha}, \tau_{\alpha}) \rightarrow (Y_{\alpha}, \tau_{\alpha}) \) be a function for each \(\alpha \in \Delta \). If the product function \(f = \prod_{\alpha \in \Delta} f_{\alpha} : \prod_{\alpha \in \Delta} X_{\alpha} \rightarrow \prod_{\alpha \in \Delta} Y_{\alpha} \) is \(\omega\beta - \text{continuous} \), then \(f_{\alpha} \) is \(\omega\beta - \text{continuous} \).
Proof. We first prove that any projection function is pre-semi-preopen function. Let \(\mathcal{U} \in \beta \mathcal{O}(X, \tau) \) hence \(f(\mathcal{U}) \subseteq f(\text{cl}(\text{int}(\text{cl}(\mathcal{U})))) \), by using the assumption that \(f \) is open and continuous surjective, \(f(\mathcal{U}) \subseteq \text{cl}(\text{int}(f(\mathcal{U}))) \). Thus \(f(\mathcal{U}) \in \beta \mathcal{O}(Y, \sigma) \). Now for each \(\beta \in \Delta \), let \(P_{\beta} : \prod_{\alpha \in \Delta} X_{\alpha} \rightarrow X_{\beta} \) be the projections, then we have \(q_{\beta} \circ f = f_{\beta} \circ P_{\beta} \) for each \(\beta \in \Delta \). Now \(f \) is \(\omega \beta \) continuous and \(q_{\beta} \) is continuous, \(q_{\beta} \circ f \) is \(\omega \beta \) continuous by Proposition 2.16 and hence \(f_{\beta} \circ P_{\beta} \) is \(\omega \beta \) continuous function. Since \(P_{\beta} \) is pre-semi-preopen function it follows from Theorem 2.21, that \(f_{\beta} \) is \(\omega \beta \) continuous function.

Theorem 2.23. For any space \(X \), the following properties are equivalent:

i. \(X \) is \(\beta \) Lindelöf.

ii. Every \(\omega \beta \) cover of \(X \) has a countable subcover.

Proposition 2.24. If \(f : (X, \tau) \rightarrow (Y, \sigma) \) be an \(\omega \beta \) surjective function. And \(X \) is \(\beta \) Lindelöf, then \(Y \) is Lindelöf.

Proof. Let \(\{ V_{\alpha} : \alpha \in \Delta \} \) be an open cover of \(Y \). Then \(\{ f^{-1}(V_{\alpha}) : \alpha \in \Delta \} \) is \(\omega \beta \) cover of \(X \), as \(f \) is \(\omega \beta \) continuous. Since \(X \) is \(\beta \) Lindelöf, by Theorem 2.23, \(X \) has a countable subcover, say \(f^{-1}(V_{\alpha_1}), f^{-1}(V_{\alpha_2}), \ldots, f^{-1}(V_{\alpha_n}), \ldots \), Thus \(V_{\alpha_1}, V_{\alpha_2}, \ldots, V_{\alpha_n}, \ldots \) is a subcover of \(\{ V_{\alpha} : \alpha \in \Delta \} \) of \(Y \). It follows that \(Y \) is Lindelöf.

Corollary 2.25. Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be a \(\beta \) surjective function. And \(X \) is \(\beta \) Lindelöf, then \(Y \) is Lindelöf.

\(\omega \beta \) -Irresolute Functions

Definition 3.1 A function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is called \(\omega \beta \) Irresolute if the inverse image of each \(\omega \beta \sigma \) set is an \(\omega \beta \sigma \) set.

Remark: We observe that every \(\omega \beta \) Irresolute function is \(\omega \beta \) continuous but the converse is not true, which is shown by the following example.

Example 3.2. Let \(X = \mathbb{R} \) with the topology \(\tau = \{ R, \phi, R - Q \} \), and \(Y = \{1,2\} \) with the topology \(\sigma = \{ \phi, Y, \{2\} \} \). Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be the function defined by

\[
f(x) = \begin{cases} 1 & x \in \mathbb{R} - Q \\
2 & x \in Q \end{cases}
\]

Then \(f \) is \(\omega \beta \) continuous but not \(\omega \beta \) Irresolute since \(f^{-1}(\{1\}) = \mathbb{Q} \in \omega \beta \mathcal{O}(X, \tau) \).

Theorem 3.3 The following conditions are equivalent for a function \(f : (X, \tau) \rightarrow (Y, \sigma) \).

i. The function \(f \) is \(\omega \beta \) Irresolute.

ii. For each \(x \in X \) and \(V \in \omega \beta \mathcal{O}(Y, \sigma) \) containing \(f(x) \), there exists \(U \in \omega \beta \sigma(X, \tau) \) containing \(x \) such that \(f(U) \subseteq V \).

iii. For each \(x \in X \), the inverse of every \(\omega \beta \) neighbourhood of \(f(x) \) is \(\omega \beta \) neighbourhood of \(x \).
For each $x \in X$ and ω^β-neighbourhood V of $f(x)$, there exists ω^β-neighbourhood U of x such that $f(U) \subseteq V$.

Proof. Let $x \in X$ and $V \subseteq \omega^\beta O(Y, \sigma)$ containing $f(x)$, since f is ω^β-Irresolute then $f^{-1}(V) \subseteq \omega^\beta O(X, \tau)$ containing x. It follows that $f(f^{-1}(V)) \subseteq V$.

(ii) Suppose that $x \in U$ and V is ω^β-neighbourhood of $f(x)$, by Definition 2.2 there exists $V_1 \subseteq \omega^\beta O(Y, \sigma)$ such that $f(x) \in V_1 \subseteq V$, there exists $U \subseteq \omega^\beta O(X, \tau)$ containing x such that $f(U) \subseteq V_1$. So, $x \in U \subseteq f^{-1}(V_1) \subseteq f^{-1}(V)$. Hence, $f^{-1}(V)$ is ω^β-neighbourhood of x.

(iii) If V is ω^β-neighbourhood of $f(x)$, $f^{-1}(V)$ is ω^β-neighbourhood of x by (ii) and $f(f^{-1}(V)) \subseteq V$.

(iv) For each $x \in X$, let $V \subseteq \omega^\beta O(Y, \sigma)$ containing $f(x)$. Take $A = f^{-1}(V)$, if $x \in A$. Then $f(x) \in V$. Since $V \subseteq \omega^\beta O(Y, \sigma)$ so V is a ω^β-neighbourhood of $f(x)$. So $A = f^{-1}(V)$ is ω^β-neighbourhood of x. From which it follows that there exists $A_x \subseteq \omega^\beta O(X, \tau)$ such that $x \in A_x \subseteq A$. Thus, by Lemma 1.4 (i) $A = \bigcup_{x \in A} A_x$ is $\omega^\beta O(X, \tau)$.

Set. Hence, f is ω^β-Irresolute.

Theorem 3.4. The following conditions are equivalent for a function $(X, \tau) \rightarrow (Y, \sigma)$:

i. f is ω^β-Irresolute.

ii. For each $\omega^\beta C (Y, \sigma)$ subset F of Y, $f^{-1}(F)$ is $\omega^\beta C(X, \tau)$.

iii. For each subset A of X, $f((\omega^\beta cl(A))) \subseteq \omega^\beta cl(f(A))$.

iv. For each subset B of Y, $\omega^\beta cl(f^{-1}(B)) \subseteq f^{-1}(\omega^\beta cl(B))$.

Proof.

(i) If $F \subseteq \omega^\beta C (Y, \sigma)$ subset of Y. Then $X \setminus f^{-1}(F) \subseteq \omega^\beta O(X, \tau)$, which implies that $f^{-1}(F) \subseteq \omega^\beta C(X, \tau)$.

(ii) Let A be a subset of X. since $A \subseteq f^{-1}(f(A))$, we have $A \subseteq f^{-1}(\omega^\beta cl(f(A)))$. Now $f^{-1}(\omega^\beta cl(f(A))) \subseteq \omega^\beta C(X, \tau)$ set containing A by (ii), then $\omega^\beta cl(A) \subseteq f^{-1}(\omega^\beta cl(f(A)))$. It follows that $f((\omega^\beta cl(f(A)))) \subseteq \omega^\beta cl(f(A))$.

(iii) Let $B \subseteq Y$, by (iii) $f((\omega^\beta cl(f^{-1}(B)))) \subseteq \omega^\beta cl(f(f^{-1}(B))) \subseteq \omega^\beta cl(B)$, hence $\omega^\beta cl(f^{-1}(B)) \subseteq f^{-1}(\omega^\beta cl(B))$.

(iv) Suppose f is not ω^β-Irresolute. So there exist $x \in X$ and $V \subseteq \omega^\beta O(Y, \sigma)$ with $f(x) \in V$ such that for all $U \subseteq \omega^\beta O(X, \tau)$ with $x \in U$ and $f(U) \not\supseteq V$ i.e $f(U) \cap (Y - V) \neq \emptyset$. Therefore, $x \in f^{-1}(\omega^\beta cl(Y - V))$. By Theorem 1.6, $f(x) \subseteq \omega^\beta cl(Y - V)$. Thus for all $V \subseteq \omega^\beta O(Y, \sigma)$ containing $f(x)$, we have $V \cap (Y - V) \neq \emptyset$, a contradiction. Therefore, f is ω^β-Irresolute.

Theorem 3.5. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a function. Then f is ω^β-Irresolute if and only if $f^{-1}(\omega^\beta Int(B)) \subseteq \omega^\beta Int(f^{-1}(B))$ for every $B \subseteq Y$.

Proof. First suppose \(f \) is \(\omega^*\beta - \text{Irresolute} \). Let \(B \subseteq Y \). Since \(f \) is \(\omega^*\beta - \text{Irresolute} \), we have \(f^{-1}(\omega^*\beta \text{Int}(B)) \) is \(\omega^*\beta \text{O}(X,\tau) \) set. As \(f^{-1}(\omega^*\beta \text{Int}(B)) \subseteq f^{-1}(\omega^*\beta \text{Int}(f^{-1}(B))) \).

Conversely, Let \(x \in X \) and \(V \subseteq \omega^*\beta \text{O}(Y,\sigma) \) with \(f(x) \in V \). Then \(x \in f^{-1}(V) \) and so by assumption \(x \in \omega^*\beta \text{Int}(f^{-1}(V)) \). There exists an \(U \subseteq \omega^*\beta \text{O}(X,\tau) \) sets such that \(x \in U \subseteq f^{-1}(V) \).

Hence \(f(x) \in f(U) \subseteq V \) and hence the result.

Proposition 3.7 \(g \circ f \) is \(\omega^*\beta - \text{continuous} \), if \(f : (X,\tau) \rightarrow (Y,\sigma) \) is \(\omega^*\beta - \text{Irresolute} \) and \(g : (Y,\sigma) \rightarrow (Z,\rho) \) is \(\omega^*\beta - \text{continuous} \).

Proof. Let \(x \in X \) and let \(V \) be any open set in \((Z,\rho) \) containing \(g(f(x)) \). Since \(g \) is \(\omega^*\beta - \text{continuous} \), there exists an \(\omega^*\beta \text{O}(Y,\sigma) \) set \(W \) containing \(f(x) \) such that \(g(W) \subseteq V \). Put \(g(f(U)) \subseteq g(W) \subseteq V \). Hence \(g \circ f \) is \(\omega^*\beta - \text{continuous} \).

Corollary 3.8. If \(f : (X,\tau) \rightarrow (Y,\sigma) \) is \(\omega^*\beta - \text{Irresolute} \) and \(g : (Y,\sigma) \rightarrow (Z,\rho) \) is \(\omega^*\beta - \text{continuous} \), then \(g \circ f \) is \(\omega^*\beta - \text{continuous} \).

Recall that a function \(f : (X,\tau) \rightarrow (Y,\sigma) \) is said to be \(\omega^* - \text{Irresolute} \) [4] if the inverse image of each \(\omega^*\beta \text{O}(Y,\sigma) \) set is an \(\omega^*\beta \text{O}(X,\tau) \).

Proposition 3.9. Let \(f : (X,\tau) \rightarrow (Y,\sigma) \) be an open continuous function and every \(\omega^*\beta \text{O}(Y,\sigma) \) is closed in the space \((Y,\sigma) \) then \(f \) is \(\omega^*\beta - \text{Irresolute} \).

Proof. Let \(U \subseteq \omega^*\beta \text{O}(Y,\sigma) \).

Let \(\omega^*\beta \text{cl}(f^{-1}(U)) \subseteq \text{cl}(f^{-1}(U)) = (f^{-1}(\text{cl}(U))) \subseteq f^{-1}(\omega^*\beta \text{cl}(U)) \), by Theorem 1.7, hence \(f \) is \(\omega^*\beta - \text{Irresolute} \), by Theorem 3.4.

Definition: A space \(X \) is \(\omega^*\beta - T_2 \) [4] as if for each two distinct point \(x, y \in X \), there exists \(U, V \subseteq \omega^*\beta \text{O}(X,\tau) \) such that \(x \in U, y \in V \) and \(U \cap V = \emptyset \).

Theorem 3.10 If \(f : (X,\tau) \rightarrow (Y,\sigma) \) is an \(\omega^*\beta - \text{Irresolute} \) injective function and the space \(Y \) is \(\omega^*\beta - T_2 \), then \(X \) is \(\omega^*\beta - T_2 \).

Proof. Let \(x_1 \) and \(x_2 \) be distinct points of \(X \). Since \(f \) is injective and \(Y \) is \(\omega^*\beta - T_2 \), so, there exist \(V_1, V_2 \in \omega^*\beta \text{O}(Y,\sigma) \) such that \(f(x_1) \in V_1, f(x_2) \in V_2 \) and \(V_1 \cap V_2 = \emptyset \).

Now \(x_1 \in f^{-1}(V_1) \) and \(x_2 \in f^{-1}(V_2) \), then \(f^{-1}(V_1) \cap f^{-1}(V_2) = f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset \). Since \(f \) is \(\omega^*\beta - \text{Irresolute} \), for \(x \in X \), \(f(x) \not\in \text{cl}(U) \), hence \(X \) is \(\omega^*\beta - T_2 \).

Definition 3.11 A space \(X \) is said to be \(\omega^*\beta - \text{Connected} \) if there exist disjoint \(\omega^*\beta \text{O}(X,\tau) \) sets \(A \) and \(B \) such that \(A \cup B = X \).

Proposition 3.12 If \(f : (X,\tau) \rightarrow (Y,\sigma) \) is an \(\omega^*\beta - \text{Irresolute} \) surjective function and \(X \) is \(\omega^*\beta - \text{Connected} \), then \(Y \) is \(\omega^*\beta - \text{Connected} \).

Proof. Assume that \(Y \) is not \(\omega^*\beta - \text{Connected} \). Then there exist disjoint \(\omega^*\beta \text{O}(Y,\sigma) \) sets \(A \) and \(B \) such that \(A \cup B = Y \). Since \(f \) is \(\omega^*\beta - \text{Irresolute} \), \(f^{-1}(A) \) and \(f^{-1}(B) \) are nonempty \(\omega^*\beta \text{O}(X,\tau) \) sets. Further \(f^{-1}(A) \cup f^{-1}(B) = X \). It follows that \((X,\tau) \) is not \(\omega^*\beta - \text{Connected} \), which is a contradiction. Hence \((Y,\sigma) \) is \(\omega^*\beta - \text{Connected} \).
\(\omega \beta - \text{Open and } \omega \beta - \text{Closed Functions}\)

Definition 4.1 A function \(f : (X, \tau) \rightarrow (Y, \sigma)\) is called \(\omega \beta - \text{open (resp. } \omega \beta - \text{closed)}\) if the image of each open (resp. closed) set in \((X, \tau)\) is an \(\omega \beta O(Y, \sigma)\) (resp. \(\omega \beta C(Y, \sigma)\)).

Remark: We observe that every open (closed) function is \(\omega \beta - \text{open (resp. } \omega \beta - \text{closed)}\) function, but the converse is not true, which is shown by the following example.

Example 4.2. Let \(X = \{a, b\}\) with the topology \(\tau = \{\phi, X, \{a\}\}\) and \(Y = \{1, 2, 3\}\) with the topology \(\sigma = \{\phi, X, \{1\}, \{2\}, \{1, 2\}\}\). Let \(f : (X, \tau) \rightarrow (Y, \sigma)\) be the function define by \(f(x) = 3\) for all \(x \in X\). Then \(\omega \beta - \text{open and } \omega \beta - \text{closed function},\) but it is neither open nor closed function.

Proposition 4.3 A function \(f : (X, \tau) \rightarrow (Y, \sigma)\) is \(\omega \beta - \text{open}\) if and only if for each \(x \in X\) and each open set \(U \in \tau\) containing \(x\), there exists \(W \in \omega \beta O(Y, \sigma)\) set containing \(f(x)\) such that \(W \subseteq f(U)\).

Theorem 4.4 Let \(f : (X, \tau) \rightarrow (Y, \sigma)\) be a function from space \((X, \tau)\) into a space \((Y, \sigma)\). Then \(f\) is \(\omega \beta - \text{closed}\) if and only if \(\omega \beta cl(f(A)) \subseteq f(\omega \beta cl(A))\) for each set \(A\) subset of \((X, \tau)\).

Proof. Let \(f\) be \(\omega \beta - \text{closed function and } A\) any subset of \(X\). Then \(f(A) \subseteq f(\omega \beta cl(A)) \subseteq \omega \beta cl(Y, \sigma)\), therefore \(\omega \beta cl(f(A)) \subseteq f(\omega \beta cl(A))\). Conversely, suppose that \(B \in \omega \beta cl(X, \tau)\). Then \(\omega \beta cl(f(B)) \subseteq f(\omega \beta cl(f(B))) = f(B)\). Thus we obtain that \(\omega \beta cl(f(B)) = f(B)\), it follows that \(f\) is \(\omega \beta - \text{closed function}\).

Proposition 4.5 Let \(f : (X, \tau) \rightarrow (Y, \sigma)\) be a containing surjection function and let \(g : (Y, \sigma) \rightarrow (Z, \rho)\) be such that \(g \circ f : (X, \tau) \rightarrow (Z, \rho)\) is \(\omega \beta - \text{open function},\) then \(g\) is \(\omega \beta - \text{open}\).

Proof. Let \(y \in Y\) and let \(V \in \sigma\) with \(g(y) \in V\). Choose \(x \in X\) such that \(f(x) = y\). Since \(g \circ f\) is \(\omega \beta - \text{open function},\) then \(g(V) = g(f(f^{-1}(V))) \in \omega \beta O(Z, \rho)\). It follows that \(g\) is \(\omega \beta - \text{open}\).

The following examples show that the \(\omega \beta - \text{open function}\) is independent with \(\omega \beta - \text{irresolute and } \omega \beta - \text{continuous function}\).

Example 4.6 Let \(X = \mathbb{R}\) with the topologies \(\tau = \{\mathbb{R}, \phi, \mathbb{R} - Q, \}\), and let \(Y = \{2, 3\}\) with the topology \(\rho = \{\phi, Y, \{3\}\}\). Let \(f : (X, \tau) \rightarrow (Y, \rho)\) be the function defined by \(f(x) = \begin{cases} 3 & x \in Q \\ 2 & x \in \mathbb{R} - Q \end{cases}\). Then \(f\) is not \(\omega \beta - \text{continuous},\) but it can easily seen that \(f(x)\) is \(\omega \beta - \text{open function}\).

Example 4.7 Let \(X = \{1, 2\}\) with the topology \(\tau = \{\phi, X, \{1\}\}\) and let \(Y = \mathbb{R}\) with the topologies \(\sigma = \sigma_{cc}\). Let \(f : (X, \tau) \rightarrow (Y, \sigma)\) be the function defined by \(f(x) = \begin{cases} \mathbb{R} - Q & x = 2 \\ Q & x = 1 \end{cases}\). Then \(f\) is not \(\omega \beta - \text{open},\) but it can be easily seen that \(f\) is \(\omega \beta - \text{continuous}\) and \(\omega \beta - \text{irresolute function}\).

Example 4.8 Consider the function \(f\) in the Example 8 which is \(\omega \beta - \text{open},\) but not \(\omega \beta - \text{irresolute}\.\)
REFERENCES