MODELING & SIMULATION OF SOLID STATE TRANSFORMER

Swapnil Bhuskute*, Mr. V. S. Pawar, Mr. D. S. Patil

*PG Scholar, SSBT’s College of Engineering, Bambori, MS, India
Associate Professor, SSBT’s College of Engineering, Bambori, MS, India
Assistant Professor, SSBT’s College of Engineering, Bambori, MS, India

DOI: 10.5281/zenodo.48248

ABSTRACT

A New Model Solid State Transformer is used as a controllable bidirectional transmission device that can transfer power between asynchronous networks and functionally similar to back-to-back-HVDC. A solid-state transformer is the solution and it provides the efficient functioning as a conventional transformer and also provide other benefits, particularly on-demand reactive power maintenance for smart grid, power quality and voltage conversion. Recently, another high-frequency link power conversion system, the solid-state transformer, has garnered a great deal of attention and has been extensively investigated for use in distribution systems with the development of the high-voltage power device technologies. Solid-state transformer has been proposed as for the traction system, distribution and smart grid application. A SST uses power electronic devices and a high-frequency transformer to achieve isolation and voltage conversion from one level to another.

KEYWORDS: Solid State Transformer (SST), High Frequency (HF) Transformer, SST topology, HV/MV/LV Link.

INTRODUCTION

A typical SST consists of an AC/DC rectifier, a DC/DC converter with high-frequency transformer and a DC/AC inverter. One of the functions of a SST is similar to that of a traditional line frequency transformer (LFT), namely increasing or decreasing the voltage. In the last few years, European countries have opened their electricity market due to this there is an increased penetration of renewable energy and other distributed generation sources in the grid. These developments cause the network layout and operation to become much more complex, new technologies are required that allow better control, bi-directional power flow and increased number of power inputs.

The SST gives way to control the routing of electricity and provides easy methods for interfacing distributed generation with the grid. The solid-state transformer also controls power flow, which is required to ensure a stable and safe operation of the grid. However, this comes at the cost of a more complex and expensive system. SST has a similar function to that of a traditional line frequency transformer (LFT), namely increasing/decreasing the voltage.

The Solid State Transformer (SST) provides an alternative to the LFT. It uses power electronics devices and a high-frequency transformer to achieve voltage conversion and isolation.

SOLID STATE TRANSFORMER CONCEPT

The basic structure of a SST is shown in Fig. 1. The HF transformer is used as an isolator. The grid voltage is converted into a HF AC voltage through the use of power-electronics converters before applied to the primary of the HF transformer. The opposite process is performed on the High Frequency transformer secondary to get an AC and/or DC voltage for the load [4].
The traditional Line Frequency Transformer (LFT) has been used since the introduction of AC systems for voltage conversion and isolation. The widespread use of this device has resulted in a cheap, efficient, reliable and mature technology and any increase in performance are marginal and come at great cost [9]. Additional features of the SST not found in Line frequency transformer are as below [2]:

1. Reduced size and weight.
2. Instantaneous voltage regulation.
3. Fault isolation.
4. Power factor correction.
5. Control of active and reactive power flow.
6. Fault current management on low-voltage and high voltage side.
7. Active power filtering of harmonic content on the input.
8. Good voltage regulating capabilities.
9. The output can have a different frequency and number of phases than the input.
10. Possibility of a DC input or output.
11. Voltage dip and sag ride through capability (with enough energy storage).

SOLID STATE TRANSFORMER CONFIGURATIONS

The SST architectures developed in the last 10 years can be categorized as [10]:

1) SST based on their topologies:
2) SST based on their application:
3) SST architectures with focus on switching devices

Different research teams used different topologies and architectures for the Solid State Transformer.

Schematic Overview of SST based on topologies

The Solid State Transformer made up of one or more power electronics converters with an integrated high-frequency transformer. Based on the topologies, SST can be classified in four categories [11].

1) Single-stage with no DC link (Figure 2.a)
2) Two-stage with a DC link on the secondary side (Figure 2.b)
3) Two-stage with a DC link on the primary side (Figure 2.c)
4) Three-stage with a DC link on both the primary and secondary side (Figure 2.d)
Out of these four possible classifications, architecture from fig. 2.d, with two DCs, is the feasible because it has high flexibility and control performance. The DC links decouple the MV-from the LV-side, allowing for independent reactive power control and input voltage sag ride-through. This topology also allows better control of voltages and currents on both primary and secondary side[11][12][13]. It consists of an AC-DC conversion stage at the MV-side, a DC-DC conversion stage with high-frequency transformer for isolation and a DC-AC conversion stage at the LV-side.

DESIGN AND SIMULATION

AC-DC Conversion Step

The first step in the design of solid state transformer is AC-DC conversion; in this MV/HV ac is converted in the LV Dc voltage in this stage we used three level NPC conversions topology as shown in figure below[3][8].

![Fig. 3 AC-DC Simulation](image)

It consists of two level VSI’s theoretically it is extended up to several levels but practically is can extend up to only five level.

Due to additional advantages, that all phases share same DC source ultimately it reduces capacitor requirement, and reactive power control can be established, it’s simple to design.[1][12][13].

The following figure 4 shows the simulation result of three phase AC-DC conversion three level neutral point topology.

![Fig. 4 Simulation result (a) AC input source (b) converted DC output](image)
DC-DC Conversion Step
The second stage in the design of solid state transformer is DC-DC conversion stage in this stage a high frequency transformer is used for electric isolation it’s mainly used for reduction of size of SST. This stage will receive input from first stage i.e. AC-DC conversion. There are several topologies which we can use for DC-DC conversion stage here in this we are using the three phase dual active bridge converter [8].

Fig. 5 DC-DC Conversion stage model

Fig. 6 Simulation Result for DC-DC

here in the three phase DAB conversion model three half bridges are used in both the side of transformer due to use of one single three phase transformer it can achieve good efficiency and low rating transformer.

DC-AC Conversion Step
This is the third and final stage for SST design in this stage output from DC-DC conversion stage is converted into AC voltage. Here in the design we have used a conventional three phase to DC conversion model is used as shown in the figure 7. This is simple for designing but there are several topologies for designing this stage. The output of this stage is shown in the figure 8.
As from the three stages of SST design this will be very useful for future distribution and renewable generation system and has an advantage of compact design too. It has the ability to manage the source and load too. There are so many architectures and topologies have been investigated by researchers and everyone has its unique features therefore for grid system it is very much suitable [3][8].

The development of NMSST is shown in Fig 4.9 .Single phase ac/ac converters are applied to primary and secondary windings of a transformers the development of solid state transformer system which includes AC/AC converters with bidirectional switches connecting in full bridge arrangement. the development in Table 4.1(a) requires the least number of bidirectional switches ,but large size of transformer then the development as shown in Fig 4.9.The system consists of a high frequency single phase AC/AC converters are selected to generate high frequency voltages on transformer primary windings . on the transformer secondary side ,single phase AC/AC converter restore the voltages with input frequency .with this development the NMSST system can produce sinusoidal output voltages.[15]
Fig. 10. Primary Voltage Graph [Vpri]

Fig. 11. Primary Current of Electronic Transformer

Fig. 12. Transformer Module
APPLICATIONS OF SST
There are lots of applications where it can be used the following schematic will give a brief idea about the uses of application of SST.

Integration with other systems The LV DC link in the SST topology provides a good and flexible integration point for renewable energy systems in the distribution grid. When the load demand is higher than the renewable energy source capabilities then a unidirectional converter could be used. Where the highest generation capabilities exceed the load demand during certain periods, then the excess power could be fed back to the grid by using a bidirectional converter.

CONCLUSION
This paper is helpful for studying the various SST architecture and application with the help of control of current in SST it can widely used in distribution system. In this paper the concepts and developments in field of SST has been shown. Also various topologies and configuration implemented has been briefly reviewed and the model for the same is designed and the results are observed with graphs. The comparison between this various topologies of SST has been summarized. Finally it is concluded that the conventional transformer having disadvantages like bulkiness, poor voltage regulation saturation of core for non linear load, Majority of these problems can be eliminated by solid state power electronic transformer. So finally we conclude that with the help of this SST we can regulate the voltage, Source disturbance rejection, load disturbance rejection, micro grid integration and VAR compensation. Also it has the ability to work as energy router for smart grid energy.
internet. Therefore application of power electronic based SST now a day's not limited up to distribution level but research work suggested that SST are having ability to replace the conventional transformer too in near future.

REFERENCES