Definition 2.1 A subset A of a topological space (X, τ) is called

1) generalized closed set (briefly g-closed) [5] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).
2) semi-generalized closed set (briefly sg-closed) [2] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ).
3) ψg-closed set [10] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is sg-open in (X, τ).
4) ψg-closed set [8] if $\psi \text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).
5) $\psi \alpha$-closed set [1] if $\psi \text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is ψg-open in (X, τ).
6) The closure operator of $\psi \alpha$-closed set is defined as $\psi \alpha \text{cl}(A) = \cap \{F \subseteq X: A \subseteq F \text{ and } F \text{ is } \psi \alpha$-closed in $(X, \tau)\}$ [1]

Definition 2.2 A topological space (X, τ) is said to be a

(i) T_{ψ}-space if every g-ψ-closed subset of (X, τ) is closed in (X, τ). [4]
(ii) T_{α}-space if every g-α-closed subset of (X, τ) is g-α-closed in (X, τ). [4]
(iii) T_{ψ}-space if every g-ψ-closed subset of (X, τ) is g-ψ-closed in (X, τ). [9]
(iv) $T_{\psi g}$-space if every g-ψg-closed subset of (X, τ) is g-ψg-closed in (X, τ). [9]
(v) $T_{\psi g}$-space if every g-ψ-closed subset of (X, τ) is g-ψ-closed in (X, τ). [6]
(vi) T_{α}-space if every g-ψ-closed subset of (X, τ) is g-α-closed in (X, τ). [6]
(vii) $T_{\psi g}$-space if every g-ψg-closed subset of (X, τ) is g-α-closed in (X, τ). [6]
(viii) T_{α}-space if every g-ψg-closed subset of (X, τ) is g-α-closed in (X, τ). [9]
(ix) T_{ψ}-space if every g-ψ-closed subset of (X, τ) is g-ψ-closed in (X, τ). [9]
(x) α-space if every g-α-closed subset of (X, τ) is closed in (X, τ). [7]
(xi) ψ-space if every ψ-closed subset of (X, τ) is closed in (X, τ). [10]
Proposition 3.11 Theorem 4.5 [1]. Therefore \(x \) is closed in \((X, \tau)\).

Proposition 3.2 Let \(\tau \) be a \(\psi \alpha \)-space. Then \(x \) is closed in \((X, \tau)\).

Example 3.3 Let \(\tau = \{a, b, c\} \) with topology \(\tau = \{\emptyset, \{a\}, \{a, b, c\}\} \).

Theorem 3.7 Let \(A \) be a closed set in \((X, \tau)\). Hence \((X, \tau)\) is \(\psi \alpha \)-closed.

Theorem 3.6 Let \(A \) be a \(\psi \alpha \)-closed set in \((X, \tau)\). Hence \((X, \tau)\) is \(\psi \alpha \)-closed.

Theorem 3.5 Let \(A \) be a \(\psi \alpha \)-closed set in \((X, \tau)\). Hence \((X, \tau)\) is \(\psi \alpha \)-closed.

Theorem 3.4 Let \(A \) be a \(\psi \alpha \)-closed set in \((X, \tau)\). Hence \((X, \tau)\) is \(\psi \alpha \)-closed.

Theorem 3.3 Let \(A \) be a \(\psi \alpha \)-closed set in \((X, \tau)\). Hence \((X, \tau)\) is \(\psi \alpha \)-closed.

Theorem 3.2 Let \(A \) be a \(\psi \alpha \)-closed set in \((X, \tau)\). Hence \((X, \tau)\) is \(\psi \alpha \)-closed.

Theorem 3.1 Let \(A \) be a \(\psi \alpha \)-closed set in \((X, \tau)\). Hence \((X, \tau)\) is \(\psi \alpha \)-closed.

Example 3.1 Let \(A \) be a \(\psi \alpha \)-closed set in \((X, \tau)\). Hence \((X, \tau)\) is \(\psi \alpha \)-closed.
Example 3.12 Let \(X = \{a, b, c\} \) with topology \(\tau = \{\phi, [a], [b, c], X\} \). Then \((X, \tau)\) is a \(\psi \alpha T_a \) space but not a \(T_b \) space, since the subsets \([b], [c], [a, b]\) and \([a, c]\) are \(g_\alpha \)-closed but not closed in \((X, \tau)\).

Proposition 3.13 Every \(aT_b \)-space is a \(\psi \alpha T_a \)-space but not conversely.

Proof: Let \((X, \tau)\) be a \(aT_b \)-space and let \(A \) be a \(\psi \alpha \)-closed set in \((X, \tau)\). By proposition 3.10(1) \(A \) is \(g_\alpha \)-closed in \((X, \tau)\). Since \((X, \tau)\) is a \(aT_b \)-space, \(A \) is closed in \((X, \tau)\) and so it is \(\alpha \)-closed in \((X, \tau)\). Hence \((X, \tau)\) is \(\psi \alpha T_a \)-space.

Example 3.14 Let \(X = \{a, b, c\} \) with topology \(\tau = \{\phi, [a], X\} \). Then \((X, \tau)\) is a \(\psi \alpha T_a \) space but not a \(aT_b \) space, since the subsets \([a, b]\) and \([a, c]\) are \(\alpha \)-closed but not closed in \((X, \tau)\).

Proposition 3.15 Every \(\psi \alpha \) space is a \(\psi \alpha T_a \) space but not conversely.

Proof: Let \((X, \tau)\) be a \(\psi \alpha \) space and let \(A \) be a \(\psi \alpha \)-closed set in \((X, \tau)\). By proposition 3.24(1) \(A \) is \(\psi \alpha \)-closed in \((X, \tau)\). Since \((X, \tau)\) is a \(\psi \alpha \) space, \(A \) is closed in \((X, \tau)\) and so it is \(\alpha \)-closed in \((X, \tau)\). Hence \((X, \tau)\) is \(\psi \alpha T_a \)-space.

Example 3.16 Let \(X = \{a, b, c\} \) with topology \(\tau = \{\phi, [a], X\} \). Then \((X, \tau)\) is a \(\psi \alpha T_a \) space but not a \(\psi \alpha \) space, since the subsets \([b]\) and \([c]\) are \(\psi \alpha \)-closed but not closed in \((X, \tau)\).

Remark 3.17 The following examples show that \(\psi \alpha T_a \)-space is independent from \(g_\alpha T_{\psi \alpha \tau} \)-space, \(\alpha T_a \)-space and \(\psi \alpha T_{\psi \alpha \tau} \)-space

Example 3.18 Let \(X = \{a, b, c\} \) with topology \(\tau = \{\phi, [a], [b, c], X\} \). Then \((X, \tau)\) is a \(\psi \alpha T_a \) space but not a \(g_\alpha T_{\psi \alpha \tau} \) space and not a \(\psi \alpha T_{\psi \alpha \tau} \) space, since the subsets \([b, c]\), \([a, b]\) and \([a, c]\) are \(g_\alpha \)-closed, \(\alpha \)-closed and \(\psi \alpha \) closed in \((X, \tau)\).

Example 3.19 Let \(X = \{a, b, c\} \) with topology \(\tau = \{\phi, [a], X\} \). Then \((X, \tau)\) is a \(g_\alpha T_{\psi \alpha \tau} \)-space, \(\alpha T_a \)-space and \(\psi \alpha T_{\psi \alpha \tau} \)-space but not a \(\psi \alpha T_a \) space, since the subsets \([a, c]\) and \([b, c]\) are \(\psi \alpha \)-closed but not \(\alpha \)-closed in \((X, \tau)\).

Remark 3.20 The space \(\psi \alpha T_a \) is independent of \(\alpha T_a \) space and \(\psi \alpha \) space as seen from the following example.

Example 3.21 Let \(X = \{a, b, c\} \) with topology \(\tau = \{\phi, [a], [b, c], X\} \). Then \((X, \tau)\) is an \(\alpha \)-space, \(\alpha T_a \) space and \(\alpha T_a \) space, not \(\psi \alpha T_a \) space, since the subsets \([a, c]\) and \([b, c]\) are \(\psi \alpha \)-closed but not \(\alpha \)-closed in \((X, \tau)\).

Example 3.22 Let \(X = \{a, b, c\} \) with topology \(\tau = \{\phi, [a], [a, b], X\} \). Then \((X, \tau)\) is a \(\psi \alpha T_a \) space but not an \(\alpha \)-space, \(\alpha T_a \) space and \(\psi \alpha \) space, since the subset \([b]\) is \(\alpha \)-closed and \(\alpha g_\alpha \)-closed but not closed, \(\psi \alpha \)-closed and \(\psi \alpha \)-closed in \((X, \tau)\).

Remark 3.23 The following examples show that \(\psi \alpha T_a \) space and \(T_{1/2} \) space are independent.

Example 3.24 Let \(X = \{a, b, c\} \) with topology \(\tau = \{\phi, [a], [b, c], X\} \). Then \((X, \tau)\) is a \(T_{1/2} \) space but not a \(\psi \alpha T_a \) space, since the subsets \([a, c]\) and \([b, c]\) are \(\psi \alpha \)-closed but not \(\alpha \)-closed in \((X, \tau)\).

Example 3.25 Let \(X = \{a, b, c\} \) with topology \(\tau = \{\phi, [a], X\} \). Then \((X, \tau)\) is a \(\psi \alpha T_a \) space but not a \(T_{1/2} \) space, since the subsets \([b]\), \([c]\), \([a, b]\) and \([a, c]\) are \(g_\alpha \)-closed but not \(g_\alpha \)-closed in \((X, \tau)\).

Proposition 3.26 Every \(g_\alpha T_{\psi \alpha \tau} \) space is a \(g_\alpha T_{\psi \alpha \tau} \) space but not conversely.

Proof: The proof follows from the fact that every \(g_\alpha \)-closed set is \(g_\alpha \)-closed.

Example 3.27 Let \(X = \{a, b, c\} \) with topology \(\tau = \{\phi, [a], [a, b], X\} \). Then \((X, \tau)\) is a \(g_\alpha T_{\psi \alpha \tau} \) space but not \(g_\alpha T_{\psi \alpha \tau} \) space, since the subset \([a, c]\) is \(g_\alpha \)-closed but not \(\psi \alpha \)-closed in \((X, \tau)\).

Proposition 3.28 Every \(\psi \alpha T_{\psi \alpha \tau} \) space is a \(g_\alpha T_{\psi \alpha \tau} \) space and \(\alpha T_a \)-space but not conversely.

Proof: The proof follows from the fact that every \(g_\alpha \)-closed set and \(g_\alpha \)-closed set is \(\psi \alpha \)-closed.

Example 3.29 Let \(X = \{a, b, c\} \) with topology \(\tau = \{\phi, [a], [b, a], X\} \). Then \((X, \tau)\) is a \(g_\alpha T_{\psi \alpha \tau} \) space and a \(g_\alpha T_{\psi \alpha \tau} \) space but not a \(\psi \alpha T_{\psi \alpha \tau} \) space, since the subsets \([a]\) and \([b]\) are \(\psi \alpha \)-closed but not \(\psi \alpha \)-closed in \((X, \tau)\).

Remark 3.30 The spaces \(g_\alpha T_{\psi \alpha \tau} \) space, \(\alpha T_a \)-space and \(\psi \alpha T_{\psi \alpha \tau} \) space are independent with \(\psi \alpha \) space.

Example 3.31 Let \(X = \{a, b, c\} \) with topology \(\tau = \{\phi, [a], [b, c], X\} \). Then \((X, \tau)\) is a \(\psi \alpha \) space but not a \(g_\alpha T_{\psi \alpha \tau} \) space, not a \(\psi \alpha T_{\psi \alpha \tau} \) space and not a \(\psi \alpha T_{\psi \alpha \tau} \) space, since the subsets \([b]\), \([c]\), \([a, b]\) and \([a, c]\) are \(g_\alpha \)-closed, \(\alpha \)-closed and \(\psi \alpha \) closed but not \(\psi \alpha \)-closed in \((X, \tau)\).

Example 3.32 Let \(X = \{a, b, c\} \) with topology \(\tau = \{\phi, [a, b], X\} \). Then \((X, \tau)\) is a \(g_\alpha T_{\psi \alpha \tau} \) space, a \(\alpha T_a \)-space and a \(\psi \alpha T_{\psi \alpha \tau} \) space but not \(\psi \alpha \) space, since the subsets \([a, c]\) and \([b, c]\) are \(\psi \alpha \)-closed but not closed in \((X, \tau)\).
REFERENCES

