Design of Inductively Degenerated 2.5 GHz LNA Using 0.13μm Technology

Suhail Ahmad Beg*1, Ms.Tarana Afrin Chandel2, Ahsan Ul Haq Manzoor3

*1,2,3 Department Of E&C, Integral University, Lucknow, India
begsuhail@ymail.com

Abstract

Low Noise Amplifier (LNA) is an electronic amplifier used to amplify very weak signals. Low noise amplifiers are the main component in the receiving end of the communication systems. In a communication system the wanted input signal is weak and the main function of LNA is to amplify the signal without adding noise to it. LNA is often located very close to the antenna, so that losses in the feed line become less critical.

In this paper, the design of a Single-Ended LNA operating at 2.5GHz using 0.13μm technology is explained. The tools used for design the single-ended design is Advanced Design System (ADS 20011.10) for simulation.

This design and implementation is based on inductively degenerator cascode type. The results show a gain of 24.521 dB, noise figure of 2.787dB and a stability factor of 9.24

Keywords: LNA.

Introduction

Wireless communication systems use electromagnetic signals which are having frequencies in the range of hundreds of kilo hertz to giga hertz. Those frequencies we usually call as radio frequency (RF). In communication systems, the information that is usually sent is modulated and put onto a radio frequency carrier and amplified before transmission. A RF receiver front end comprises of antenna, band pass filter, a voltage controlled oscillator and a mixer. The signal coming out of band pass filter is to be amplified by LNA from a wide range of frequencies. The function of the mixer following LNA is to convert the amplified signal to lower frequencies.

Table 1: Specifications of LNA

<table>
<thead>
<tr>
<th>SI No</th>
<th>Parameters</th>
<th>Specifications</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Frequency</td>
<td>2.5</td>
<td>GHz</td>
</tr>
<tr>
<td>2</td>
<td>Noise Figure</td>
<td><3</td>
<td>dB</td>
</tr>
<tr>
<td>3</td>
<td>Gain</td>
<td><15</td>
<td>dB</td>
</tr>
<tr>
<td>4</td>
<td>Power Consumption</td>
<td><30</td>
<td>mW</td>
</tr>
<tr>
<td>5</td>
<td>Source & Load Impedance</td>
<td>50</td>
<td>Ω</td>
</tr>
</tbody>
</table>

Design of LNA

A) Low Noise Amplifier Topology

To match the input impedance techniques such as common gate and common source are used. Resistor common source topology is not used because the various the noise associated with the resistor. Also the common gate is used so that the input conductance is equal to transconductance of the CMOS transistor. Another method which is inductive source degeneration is used. The advantage of this method is that a good noise performance is achieved but the main problem in this technique is sensitivity to gate induced current noise which can be improved by quality factor of the circuit. So in this design we use cascade inductor source degeneration topology. By selecting the values of gm, Ls and Cgs, the input resistance can be equated to 50 ohms source resistance and the input reactance can be resonated.
out by series inductor (L_s). Inductor degeneration also improves the linearity by forming a negative series feedback.

Common Source Inductive Degeneration

B) Design of Single-Ended Low Noise Amplifier

The input impedance Z_{in} of a LNA is given by the equation

$$Z_{\text{in}} = \frac{s(L_g + L_s) + \frac{1}{s(c_{gs} + c_d) + \frac{g_m L_s}{c_{gs} + c_d}}}{1}$$

And the value of the ω_t is

$$\omega_t = \frac{g_m}{c_{gs} + c_d}$$

The value of the gate inductor L_g is

$$L_g = \frac{(Q_l \times R_s / \omega) - L_s}{1}$$

From the above 3 equations we find the various values as below:

1. Value of L_s is 0.5nH.
2. Cut-off frequency ω_t is 1×10^{11} rad/sec.
3. Optimal Quality factor of inductor Q_l is 3
4. Value of L_g is 18nH and $L_d = 27nH$
5. Width W is 90.5u.
6. Transconductance G_m is 0.02124A/V.
7. Effective voltage V_{eff} is 2.3V.
8. Bias current I_d is 837µA
9. Value of c is 0.1pf

Where

L_g is the inductor connected to the gate,
L_s is the source inductor,
c_{gs} gate source capacitance,
G_m transcondutance of input device
L_{min} is the minimum length of the transistor specified as 0.130μm and
C_{ox} is the oxide capacitance of transistor.

Simulation Results

A) Noise figure analysis: The value of the noise figure obtained after simulation is shown in the graph below.
B) Gain: The value of the gain $S(2, 1)$ obtained after simulation is shown below.

C) S-Parameter analysis: The various values of s-parameters is shown below in the graph.

D) Stability Factor K: The value of the stability factor K can be calculated as

$$K = \frac{1 - |S_{22}|^2 - |S_{11}|^2 + |\Delta_5|^2}{2|S_{12}S_{21}|} > 1$$

$$\Delta_5 = S_{11}S_{22} - S_{12}S_{21}$$

Comparison of Single Ended Lna Design

The table given below compares the reference LNA with the proposed LNA which is being used for Bluetooth transformation.

<table>
<thead>
<tr>
<th>SINO</th>
<th>PARAMETERS</th>
<th>LNA(II)</th>
<th>PROPOSED LNA</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Frequency</td>
<td>2.5</td>
<td>2.5</td>
<td>Ghz</td>
</tr>
<tr>
<td>2</td>
<td>Noise Figure</td>
<td>3</td>
<td>2.787</td>
<td>dB</td>
</tr>
<tr>
<td>3</td>
<td>Gain</td>
<td>15</td>
<td>24.521</td>
<td>dB</td>
</tr>
<tr>
<td>4</td>
<td>Power Consumption</td>
<td>30</td>
<td>27.83</td>
<td>mW</td>
</tr>
<tr>
<td>5</td>
<td>Source & Load Impedance</td>
<td>50</td>
<td>50</td>
<td>Ω</td>
</tr>
</tbody>
</table>

[1908-1911]
Conclusion
The single ended LNA has been designed and simulated using ADS (2011.10) tool. The various values of the noise figure, gain, power consumption has been analysed for 0.13μm and later on comparison has been made in the table.

References