Design and Modal Analysis of Spur Gear with Experimental Verification

Miss. Nilofar H Pathan*, Dr. Vikrama Singh, Prof. P.P. Shreshta

1M.E. Mech. Design Engineering Dept. Pad Dr. D.Y. Patil Institute of Engineering & Tech. Pimpri Pune, India
3Professor Mech. Engineering Dept. Pad Dr. D.Y. Patil, Institute of Engineering & Tech. Pimpri Pune, India

Abstract

Present paper covers the design, modal analysis and results of experimental tests of spur gear. Effort is to increase the fundamental frequencies of existing gear and to improve performance of existing gear without compromising on the performance. Result of FEM analysis is compared with the experimental result and analytical results.

Keywords: modal analysis

Introduction

Gears are used in machines and vehicles for the transmission of power. The design of gears is highly complicated involving many constraints such as strength, pitting resistance, bending stress, scoring wear, and interference in involutes gears etc. The concentration is focused on spur gear sets which are used to transmit motion between parallel shafts. The toothed gear transmission stands unique due to its high efficiency, reliable operation.

The spur gear is the first choice option for gears except when high speeds, loads and ratios direct towards other by using the vibration analysis and parameters such as natural frequency and vibration mode can be calculated.

Gear noise and vibration is a major problem in many power transmission application. This problem becomes more significant in applications with higher operating speeds the where vibratory excitation which is related to the gear transmission error.[6]

Now a days most of the mechanical systems are subjected to dynamic loading which causes & shortens of the usable time, crack, noise and fatigue, in general the total effect of work for the mechanical system is lowered. Reasons for such behavior are type of loading, construction and conditions of work where the mechanical systems operate.

Objectives

1. To study the modal frequencies for certain mode shapes, in order to obtain the controllable dynamic parameters of the gear set.
2. Finding the natural frequencies of the system before making the gears.
3. To avoid resonance.
4. To improve the performance of exiting gear without compromising on the performance.
5. To increase the fundamental frequencies of gear & pinion at optimum weight.

Problem definition

Modal oscillation of gearbox housing walls and other elastic structures is very important for the noise emitted by systems into the surroundings. Modal activity of housing walls is in direct relation with the structure and intensity of noise emitted by the gearbox into the surrounding. Therefore, research of modal activities is of general importance for modeling the process of generation of noise in mechanical systems. The noise emitted into the surroundings by the gearbox is mostly the consequence of natural oscillation of the housing. [5]

Model of exiting gear

Table 1 : Gears parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Pinion</th>
<th>Gear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td>2.884 mm</td>
<td>2.8 mm</td>
</tr>
<tr>
<td>Width</td>
<td>9.842 mm</td>
<td>9.842 mm</td>
</tr>
<tr>
<td>Root radius</td>
<td>16.271 mm</td>
<td>19.558 mm</td>
</tr>
<tr>
<td>Addendum radius</td>
<td>19.05 mm</td>
<td>22.225 mm</td>
</tr>
<tr>
<td>Pitch Circle radius</td>
<td>17.646 mm</td>
<td>20.350 mm</td>
</tr>
<tr>
<td>Pitch</td>
<td>5.8 mm</td>
<td>5.956 mm</td>
</tr>
<tr>
<td>Module</td>
<td>1.85</td>
<td>1.52</td>
</tr>
<tr>
<td>No. of teeth</td>
<td>19</td>
<td>22</td>
</tr>
</tbody>
</table>

1. Material Used: EN9

2. Type Spur Gear

3. Application for case Study: Automotive.

Modeling of spur gear is in CATIA

Catia stand for computer aided three dimensional interactive application. The most widely used software in modeling now a days is a catia.

Analytical Method

The result of studying free oscillations of the system are own frequencies or own vectors, the simplest case as the system without damping and action of external forces so it is described by a differential equation.

\[m \ddot{x} + k \dot{x} = 0 \]

fundamental frequency is

\[w = \sqrt{\frac{k}{m}} \]

\(k \) = stiffness

natural frequency is

\[f = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \]

apply torsional theory, rotational stiffness is

for pinion,

\[K_1 = \frac{J_p G}{R_p} \ldots \ldots (1) \]

where,

\[J_p = \frac{\pi}{32} (D_p^4 - d^4) \]

\[G = \frac{E}{2(1 + \nu)} \]

"G" is the rigidity modulus of the material

"J" is the second moment of area about the rotation axis

For Gear,

\[K_2 = \frac{J_G G}{R_G} \ldots \ldots (2) \]

\[K_{eq} = \frac{K_1 K_2}{K_1 + K_2} \]

for pinion,

\[f_p = \frac{1}{2\pi} \sqrt{\frac{K_{eq}}{J_p}} \ldots \ldots \ldots \ldots \ldots \ldots (a) \]

for gear,

\[f_G = \frac{1}{2\pi} \sqrt{\frac{K_{eq}}{J_G}} \ldots \ldots \ldots \ldots \ldots \ldots (b) \]

with the use of torsional theory we calculate natural frequency[9]

Modal analysis of exiting gears

Modal analysis, which means the study of the structure mode shape under excitation to its natural frequency, is important in the design stage.
The finite element program Nastran was used to calculate the natural frequencies & mode shape of spur gear.

Modal analysis can predict the resonance of structure excited by the dynamic input.

Vibration (modal analysis) is a very effective technique for gear box health monitoring & fault detection. Health monitoring for gearbox is an improvement aspect to avoid failure of the machine. Using the free vibration analysis one calculates critical parameters such as natural frequencies & vibration modes that are essential for almost all dynamic investigations.

Mesh setting of the gear in nastran

Table 2 Material property

<table>
<thead>
<tr>
<th>Material (steel)</th>
<th>Young’s modulus (GPa)</th>
<th>Poisons ratio</th>
<th>Density (Kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN9</td>
<td>2.06</td>
<td>0.3</td>
<td>7.8</td>
</tr>
<tr>
<td>EN19B</td>
<td>2.10</td>
<td>0.29</td>
<td>7.8</td>
</tr>
<tr>
<td>EN353</td>
<td>2.2207</td>
<td>0.264</td>
<td>7.8</td>
</tr>
</tbody>
</table>

The gear designs are imported. In modal analysis using FEM, gear model is meshed with tetrahedral elements. The model consist of 101501 nodes & elements 62081. FEM is a technique of predicting the performance of a real structure under precise load and displacement condition.

Boundry condition of exiting gear

Fig.2 Mesh model with boundary Condition

The mode shape of the gear in FEM are calculated independently of the excitation, means that the structure is only mass and stiffness distribution dependent.

Mode shapes and frequencies of exiting gears with two different material (EN19B AND EN353)

Table 3 Two modes of frequencies for EN9 material

<table>
<thead>
<tr>
<th>Operating Mode</th>
<th>Frequency (Analytical)</th>
<th>Frequency (nastran)</th>
<th>Percentage Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode (pinion)</td>
<td>30908</td>
<td>32227</td>
<td>4</td>
</tr>
<tr>
<td>Mode (gear)</td>
<td>44795</td>
<td>41561</td>
<td>7</td>
</tr>
</tbody>
</table>

The percentage difference is calculated by normalizing the nastran data with the analytical values. As seen in Table 1 the values of the frequencies computed by the analytical formulas agree well with the values obtained in nastran. For the nastran analysis, spur gear was meshed with RBE2 elements with the guided boundary conditions applied at the centre at SPC.

EN9 is existing material. It's frequencies is 32227 HZ and effort is to increase the fundamental frequencies.
by changing material and to improve performance of existing gear without compromising on performance.

The present used material of a spur gears is EN9 in this project gear is designed using two different material EN 19B and EN 353. Analytical calculation and analysis is done for spur gear using EN9,EN19B and EN353.3D Modeling is done in CATIA V5 and analysis is done in NASTRAN.

Table 4 Two Modes Of Frequencies for EN19b material

<table>
<thead>
<tr>
<th>Operatin g mode</th>
<th>Frequency (Analytical)</th>
<th>Frequency (nastran)</th>
<th>Percentage Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode (pinion)</td>
<td>30850</td>
<td>32220</td>
<td>4</td>
</tr>
<tr>
<td>Mode (gear)</td>
<td>44350</td>
<td>41800</td>
<td>7</td>
</tr>
</tbody>
</table>

Modal analysis of different two materials EN9 and EN19B having same frequencies so we use another material(EN353).

After modal analysis of EN353 material have different mode shapes and frequencies. EN353 material frequencies is increased. It is more than EN9 material.

Table 5 Two Mode Frequencies for EN353 material

<table>
<thead>
<tr>
<th>Operating Mode</th>
<th>Frequency (Analytical)</th>
<th>Frequency (nastran)</th>
<th>Percentage Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode (for pinion)</td>
<td>31367</td>
<td>33350</td>
<td>5.90</td>
</tr>
<tr>
<td>Mode (for gear)</td>
<td>44424</td>
<td>51780</td>
<td>14</td>
</tr>
</tbody>
</table>

Experimental set up

It is proposed to induce a defect on a particular tooth of a chosen gear in the gear box & generate the vibrations.

To sense the vibration signal generated by the gearbox an accelerometer has been used. In order to process the vibration signal sensed by the accelerometer on FFT Analyzer has been selected. With the use of experimental set up we can identify the natural frequencies for the component using the principle of resonance.

Typically FFT Analyzer is used for determining the same.

The computational approach given results more close to practical values through analyses.[7]

Experimental results

Type of test: Vibration test

Aim of test: To record natural frequency through physical experimentation while comparing results with finite element modeling

Name of the Port: Automotive gear
Machine Type: FFT Analyzer[8]

Instrument used: Accelerometer, RT Pro Photon software

![Test graph](image1)

![FFT graph](image2)

Tabel 6 : Gears parameters

<table>
<thead>
<tr>
<th>Material (EN9)</th>
<th>Readings determined by FEA Method</th>
<th>Reading recorded during physical experimentation</th>
<th>% Variation results analysis Vs Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32227 HZ</td>
<td>34612 HZ</td>
<td>6.80%</td>
</tr>
</tbody>
</table>

The natural frequency of gear obtained through FFT Test concurs fairly with the results obtained by FEA Method. Considering variation in the material properties and specification in the test specimen, the results are acceptable.

Conclusion

Modal analysis is evolved as standard tool for structural dynamic problem analysis & design optimization. The research area is very dynamic with a focus on performance improvement, test cost reduction and the development of new application areas. Table 3, 4 and 5 result concluded that En353 material is better for spur gear. 10% validation is allowed in experiment and computational analysis. Hence the results are validated and modification in material has brought 4% error reduction.

Acknowledgment

I thanks to Dr. Vikrama Singh and Prof. P.P. Shreshtha for introducing me the amazing culture and philosophy behind modal analysis of spur gear.

References

