Information Capacity and BER Improvement Using Haar Transform in DWT-CDMA Water Marking Based on Pseudorandom Sub Space Projection
Ch. Aruna Kumari*, G.V. Vinod
* Electronics & Communication Engineering Department,

Abstract
In this paper we remove the host image correlation with the a orthogonal sequence during extracting phase is proposed in high capacity CDMA watermarking which improves the BER, message capacity, and robustness of watermarking scheme. this elimination is implemented in steps using projections and different noises are added and filtered. Finally BER is improved compared to existing scheme.

Keywords: DWT technique, BER, robustness, orthogonal projections

Introduction
The technique used for protection and security of data is watermarking which can be used for data security, monitoring of data, and safety of medical. it is used to protect from unauthorised usage. this method contains a binary data which is embedded into a host signal with the help of secret key. Then process imposes small signal changes, determined by the key and the watermark, to obtain the required signal.

Digital watermarking involves embedding a structure in a host signal to “mark” its ownership. Spatial Domain, Frequency Domain and Wavelet Domain are different watermarking method. The simplest approach is spatial approach in which modification of the least significant bits (LSBs) of image pixels takes place. hence method protect it from losing of data.

The secure way for watermarking is the Code Division Multiple Access (CDMA) which divides out the watermark information to the some sequences i.e., m and by using orthogonal codes embed the given data into the frequency domain. The previous CDMA watermarking techniques have a setback because of increase of BER. The main cause for increase of BER is due to interference of original image content. In this paper we propose a improvement of BER takes place using orthogonal sub space projection and hence original image contents cannot be interfered. We proposed wavelet domain CDMA watermarking schemes, in order to improve the BER, which divides the given image into different sub bands such as LL, HH, etc and one of them is chosen for embedding process. hence the BER improvement and robustness can be seen in the result.

The main aim of this paper is that we proposed an orthogonal projection method in order to extract out involvement of original image data and improve the watermark parameter (λ) Then an inverse wavelet transform is performed to obtain the watermarked image.

In digital watermarking for images, the watermark can be embedded on pixel domain or on frequency domain, which is usually realize by using 2D transforms. The discrete wavelet transform (DWT) provides an intrinsic framework for multi resolution analysis of signals. Due to this reason and its ability to compact energy into a small number of coefficients, past years have seen the emergence of the wavelet transform domain watermarking algorithms.

They have shown great improvements in data capacity and high imperceptibility compared to the previous watermark embedding techniques.

Due to the fact that the DWT is widely used in image compression, wavelet based watermarking enables joint watermark in compression by addressing frame work. Gaussian Noise Attack: in this process generate binary watermarks of capacity then embedd them into the 7 test images and then add
Gaussian noise and filtered out from watermarked image. The noise rate is given below.

$$RI = \frac{\sigma}{R},$$ \hspace{1cm} (15)

Where \(\sigma\) is the deviation parameter of the noise, \(R\) is the pixel range, i.e.,

$$R = \max_{x,y} I(x,y) - \min_{x,y} I(x,y).$$ \hspace{1cm} (16)

![Fig. 1 BER-NOISE RATE PLOT](image)

JPEG compression Attacks

In this method watermark image is compressed with different quality factor.

Improvement of Bit Error Rate (BER): The bit error rate (BER) can be found by

$$BER = \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} |W(i,j) - EW(i,j)|,$$ \hspace{1cm} (14)

the main reason for the test is measurement of watermark parameter so that the peak signal to noise ratio (PSNR) can be improved. Then BER can be reduced to zero to some extent.

EXISTING CDMA based Watermarking Scheme

while comparing with other methods the discrete wavelet transform (DWT) is more accurate method for CDMA based watermarking schemes, by using bi orthogonal wavelets the image is divided in to sub band images which contains coefficients. From this one is selected represented as

$$b = (b_1, b_2, \ldots, b_2),$$

where

$$m_i = 1 - 2b_i, \hspace{1cm} i = 1, 2, \ldots, L.$$

By using pseudo sequences \(\{s_1, s_2, \ldots, s_L\}\) generated by a secret key, the message \(m\) can be encoded

$$\langle s_i, s_j \rangle = \delta_{i,j} = \begin{cases} 0, & i \neq j, \\ 1, & i = j, \hspace{1cm} i, j = 1, 2, \ldots, L, \end{cases}$$ \hspace{1cm} (2)

The noise can be obtained

$$W = \sum_{i=1}^{L} m_i s_i,$$ \hspace{1cm} (3)

pseudorandom noise pattern is embedded in the In the sub band image \(I\), and given below

$$I_w = I + \lambda W,$$ \hspace{1cm} (4)

by applying IDWT we can obtain the watermarked image. Get watermark message from \(\hat{I}_w\) from below

$$\hat{I}_w = I + \lambda W + n,$$ \hspace{1cm} (5)

where \(n\) is distortion parameter. The orthogonal pseudo sequences \(\{s_1, s_2, \ldots, s_L\}\) are obtained using the key and product calculation between this and \(\hat{I}_w\) takes place

$$\langle s_i, \hat{I}_w \rangle = \langle s_i, I \rangle + \lambda m_i + \langle s_i, n \rangle.$$ \hspace{1cm} (6)

The sign of \(m\) is based on the above equation. By applying CDMA methods we have

$$m_i = \begin{cases} 1, & \text{if} \hspace{0.2cm} \langle s_i, \hat{I}_w \rangle > 0, \\ -1, & \text{otherwise}. \end{cases}$$ \hspace{1cm} (7)

\(m_i\) obtains estimated value from \(\hat{m}_i\). Then \(\hat{S}_i\) and the host image \(I\) relation, can be neglected and eliminated from eq(6)

$$\langle s_i, \hat{I}_w \rangle = \langle s_i, I \rangle + \lambda m_i.$$ \hspace{1cm} (8)

the watermark parameter \(\lambda\) becomes smaller and insertion of original image data takes place. Now we have to improve the CDMA watermarking capacity and improve BER and reduce interference original image data considerably.

Improvisation of BER CDMA watermarking method: From the above analysis we came to know that how the image contents effect the watermarking. Now we have to avoid it by projecting the image in to subspace \(S\) we have

$$\hat{I}_w = \sum_{i=1}^{L} \langle s_i, I \rangle s_i,$$ \hspace{1cm} (9)

from the watermarked image \(I\) before extraction process we can subtract \(P(I)\), while orthogonal coefficients \(\{c_i = \langle s_i, I \rangle : i = 1, \ldots, L\}\) behaves as secret key

$$\langle s_i, \hat{I}_w - P(I) \rangle = \langle s_i, I + \lambda W - P(I) \rangle$$

$$= \lambda \langle s_i, W \rangle = \lambda m_i.$$ \hspace{1cm} (10)

hence it does not influence image contents and hence
it shows in the improvement in the watermarking process

Processing steps of embedding:
The only difference between new and existing system is calculation of projection coefficients \(\{c_i = \langle s_i, I \rangle : i = 1, \ldots, L \} \), which act as key procedure steps:
i. choose one sub image which are obtained by applying DWT
ii. by using the secret key generate the orthogonal pseudorandom sequences \(\{s_1, s_2, \ldots, s_L \} \)
iii. by this \(\{s_1, s_2, \ldots, s_L \} \), projection of images \(I \) in the subspace \(S \) can be obtained and consider the coefficients \(\{c_i = \langle s_i, I \rangle : i = 1, \ldots, L \} \) as the secondary key and can be used for later stage
iv. to obtain pseudorandom noise \(W \) encoding takes place on watermark data by eq (1) and (3)
v. by the eq (4) in the sub band image \(I \), the pseudorandom noise \(W \) will be embedded.

Step6: in order to obtain the watermarked image perform inverse discrete wavelet transform (IDWT).

2. by using the (key1) the \(o \) sequences \(\{s_1, s_2, \ldots, s_L \} \) can be generated
3. projection component can be removed by
 \[
 W_{i+1} = W_i - P_i(I) - \sum_i c_i s_i. \tag{11}
 \]
 Where \(c_i \) are orthogonal coefficients held in key2
4. by correlation detection obtain the embedding message
 \[
 m = (m_1, \ldots, m_L)
 \]
 \[
 m_i = \begin{cases} 1, & \text{if } \langle s_i, W \rangle > 0, \\ -1, & \text{otherwise.} \end{cases} \tag{12}
 \]
5. the original watermark \(b = (b_1, b_2, \ldots, b_L) \) can be obtained by transforming the extract message using the following formula
 \[
 b_i = (1 - m_i) / 2, \quad i = 1, 2, \ldots, L. \tag{13}
 \]

Experimental results
A no of experiments have been done to know how improvement takes place in the proposed method
Conclusion

Finally, in this paper we suggested elimination of correlation between the host image and orthogonal pseudorandom sequence during extracting phase takes place which improves the BER, message capacity, and robustness of watermarking and different noises are added and filtered. Finally, BER is improved and highly robustness compared to existing methods.

References