INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

KINETICS OF BIOGAS GENERATION USING DOMESTIC WASTES AS FEEDSTOCK

Nwovu O.*, Ehiri R.C., Ude C.O. and Nkwuda P. J.

*Department of Industrial Chemistry, Ebonyi State University, Abakaliki, Nigeria
Department of Chemistry/Biochemistry, Federal University Ndufu-Alike Ikwo, Nigeria
Department of Fisheries and Aquaculture, Ebonyi State University, Abakaliki, Nigeria

ABSTRACT

Anaerobically, biogas was generated from decayed organic substances through fermentation induced by microbial activities in the bio-reactor. This study reports a pilot project on the kinetics of the biogas produced from fresh pumpkin straws. The study was based on time at constant temperature of 35 °C and pH of 7. The result showed that 0.8 cm³ biogas yield was made within the first six days of the production. The yield continuously increased till the 19th day with a maximum yield of 3.0 cm³ but declined to a zero level on the 21st day. Further recovery of the gas yield was achieved by diluting the acidic slurry of the slurry with 380 cm³ of water. The yield increased from 3.0 cm³ to 3.7 cm³ on the 22nd and 23rd day respectively and later decreased to 3.2 cm³ and it then leveled at 3 cm³ in the rest of the production period. The biogas production followed initial rate Pseudo second order reaction with an average specific rate constant of 0.3212 cm³ day⁻¹.

KEYWORDS: Kinetics; Biogas; Domestic Wastes; Rate Constant.

INTRODUCTION

Anaerobic fermentation is a process which stabilizes wastes of organic origin in the absence of oxygen converting them into biogas and fertilizer which could be used to improve agricultural produce [1]. Many factors influence the yield of biogas [2, 3, 4, 5]. Increasing need for energy change and conversion has become an integral part of human existence. A quest to achieve an effective and reliable form of energy has invariably brought civilization into the society of man. It therefore, implies that human existence is dependent on the accessibility of energy since it is a hallmark of economic, social and human development [6].

This technology indirectly offers sanitation of liquid organic wastes of organic origin. Wastes of organic origin sourced at different forms are microbially disintegrated anaerobically leading to biogas generation which is invariably applied in heat and electricity generation [7]. Different unwanted organic materials can be used for biogas technology. Besides municipal solid waste, other solid and liquid wastes produced by the industries for example brewing companies, food processing industries, agricultural processing industries, sugar milling firms, paper and pulp producing firms can also be used for this purpose [8]. It also contains small amounts of hydrogen sulphide, moisture, hydrogen and siloxanes [9, 10]. (John and Twidell, 1987; Nagamani and Ramasamy, 2011).

But in all, poultry and kitchen wastes have the highest biogas potential [11]. The equations below illustrate that various products, by-products and intermediates products that are formed in the digestion process of an anaerobic state can be converted to the final product, which is methane. Anaerobic digesters can be designed and constructed based on a number of different process variables or configurations such as batch- or continuous- process; mesophilic- or thermophilic- conditions; high- or low- solid content and single stage- or multistage- complexity [10, 12, 13]. The biochemical processes that take place in a typical digester are classified into four distinct and sequential stages namely, hydrolysis, acidogenesis, acetogenesis and methanogenesis [14, 15, 16, 10]. The acids produced in Stage II are processed by methanogenic bacteria to generate methane, which is described in the following equations [17].
CH₃COOH → CH₄ + CO₂
Acetic acid Methane Carbon Dioxide
2CH₃CH₂OH + CO₂ → CH₄ + 2CH₃COOH
Ethanol Carbon Dioxide Methane Acetic acid
CO₂ + 4H₂ → CH₄ + 2H₂O
Equation for the overall process above is;
C₆H₁₂O₆ → 3CO₂ + 3CH₄

Many studies have been carried out on the kinetics of biogas production and developed kinetic models for the anaerobic digestion process [18]. Methane yield and kinetics were generally higher in leaves than in stems [19]. Monod model described a hyperbolic relationship existing between exponential microbial growth rate and substrate concentration [20]. In this model, microorganisms’ growth rate and velocity constants are vital in the biogas reaction kinetics [21]. Biogas production reaction kinetics can also be evaluated using a model that considers several parameters such as the loading rate, hydraulic retention time, maximum specific growth of organisms and other kinetic parameters such as volume of biogas yield [22].

MATERIALS AND METHODS
Materials and Equipment:
In this study, the materials used were; Fresh Pumpkin Straws, Distilled Water, Cow Dung and Animal Urine while the equipments include; Two Gas Cylinders, 1/8 S25 Gas Compressor, Laboratory Thermometer, Stop Watch bought from the market, Three pieces of 1.5mm Tubes, Digital Weighing Balance, Lighter, Agilent Gas chromatograph, model 7890A, Wooden Mortar and Pistol, 1000 cm³ Measuring Cylinder, pH Meter and Power Generator.

Production of Biogas from Fresh Pumpkin Straw (Compost)
The slurry was fed into the 11322 cm³ capacity bio-digester constructed (Figure 1). The capacity of the digester was obtained by filling the digester with water to the brim and emptying the water into a 1000 cm³ measuring cylinder. The measurement was repeated until the volume of water in the digester was recorded. The temperature and pH of the reaction system were measured. The initial temperature was 29°C while the pH was 6.7. The digester was covered with an air tight cover to prevent Oxygen from entering the digester thereby creating room for anaerobic digestion to take place, hence producing biogas as shown in Figure 1. The compressor was powered by a small energy generator. The gas-meter was connected to take the volume of the gas every 12 hr throughout the production.
RESULTS AND DISCUSSION

The pH of the slurry was 6.7 which was in agreement with [14] who stated that the permissible pH value for microbial activities in bio-digestion 6.8. The biogas ignited easily, burns efficiently with much sooth, odour and blue yellow flame which indicated that the gas was methane. The temperature of the digester was maintained at 35°C during the production period.
Inclination of Reaction Time on Biogas Yield

Figure 2 showed the result of biogas yield with time. It was observed that no gas was produced within the first five days of the mixture which could be as a result of absence of hydrolytic and fermentative bacteria needed to break sugars into acetic acid and also methanogenic bacteria that could convert the acid into methane [23]. It was observed that biogas generation started on the sixth day of production with 0.8 cm3 gas yield. This value increased to 3.0 cm3 on the 18th day. Thereafter the yield started decreasing and eventually dropped to zero on the 21st day. This gradual decrease could be attributed to either as a result of a drop in pH which may have inhibited the bacterial growth; hence making methane production impossible [24]. Figure 2 equally shows that the biogas generation continued on the 22nd day with 3.0 cm3 after the slurry had been diluted. It also showed that the biogas yield was highest on the 23rd day with 3.7 cm3, after which it depreciated down to 3.2 cm3 on the 25th day while 3.0 cm3 was recorded on the 26th and 27th day respectively.

Table 1: Change in biogas yield with time and rate

<table>
<thead>
<tr>
<th>T(Day)</th>
<th>Vo(cm3)</th>
<th>Vt(cm3)</th>
<th>V (cm3)</th>
<th>1/V(cm3)</th>
<th>lnV</th>
<th>(Vt-Vo)/Vt</th>
<th>(1/Vot) (cm3)</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0.2</td>
<td>1.0</td>
<td>0.8</td>
<td>1.25</td>
<td>-0.22</td>
<td>0.8</td>
<td>0.83</td>
<td>0.264</td>
</tr>
<tr>
<td>7</td>
<td>0.2</td>
<td>1.2</td>
<td>1.0</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.71</td>
<td>0.310</td>
</tr>
<tr>
<td>8</td>
<td>0.2</td>
<td>1.4</td>
<td>1.2</td>
<td>0.83</td>
<td>0.18</td>
<td>1.20</td>
<td>0.63</td>
<td>0.256</td>
</tr>
<tr>
<td>9</td>
<td>0.2</td>
<td>1.6</td>
<td>1.4</td>
<td>0.71</td>
<td>0.34</td>
<td>0.70</td>
<td>0.55</td>
<td>0.385</td>
</tr>
<tr>
<td>10</td>
<td>0.2</td>
<td>1.8</td>
<td>1.6</td>
<td>0.63</td>
<td>0.47</td>
<td>0.80</td>
<td>0.50</td>
<td>0.300</td>
</tr>
<tr>
<td>11</td>
<td>0.2</td>
<td>1.8</td>
<td>1.6</td>
<td>0.63</td>
<td>0.47</td>
<td>0.80</td>
<td>0.45</td>
<td>0.320</td>
</tr>
<tr>
<td>12</td>
<td>0.2</td>
<td>0.2</td>
<td>2.0</td>
<td>0.50</td>
<td>0.69</td>
<td>0.00</td>
<td>0.42</td>
<td>0.270</td>
</tr>
<tr>
<td>13</td>
<td>0.2</td>
<td>2.2</td>
<td>2.0</td>
<td>0.50</td>
<td>0.69</td>
<td>1.00</td>
<td>0.38</td>
<td>0.380</td>
</tr>
<tr>
<td>14</td>
<td>0.2</td>
<td>2.4</td>
<td>2.2</td>
<td>0.45</td>
<td>0.79</td>
<td>1.10</td>
<td>0.36</td>
<td>0.396</td>
</tr>
<tr>
<td>15</td>
<td>0.2</td>
<td>2.6</td>
<td>2.4</td>
<td>0.42</td>
<td>0.88</td>
<td>0.80</td>
<td>0.33</td>
<td>0.264</td>
</tr>
<tr>
<td>16</td>
<td>0.2</td>
<td>2.8</td>
<td>2.6</td>
<td>0.38</td>
<td>0.96</td>
<td>0.90</td>
<td>0.31</td>
<td>0.279</td>
</tr>
<tr>
<td>17</td>
<td>0.2</td>
<td>3.0</td>
<td>2.8</td>
<td>0.36</td>
<td>1.03</td>
<td>0.90</td>
<td>0.29</td>
<td>0.260</td>
</tr>
<tr>
<td>18</td>
<td>0.2</td>
<td>3.2</td>
<td>3.0</td>
<td>0.33</td>
<td>1.09</td>
<td>1.00</td>
<td>0.28</td>
<td>0.280</td>
</tr>
<tr>
<td>19</td>
<td>0.2</td>
<td>3.2</td>
<td>3.0</td>
<td>0.33</td>
<td>1.09</td>
<td>1.00</td>
<td>0.26</td>
<td>0.260</td>
</tr>
<tr>
<td>20</td>
<td>0.2</td>
<td>2.8</td>
<td>2.6</td>
<td>0.38</td>
<td>0.96</td>
<td>0.90</td>
<td>0.25</td>
<td>0.225</td>
</tr>
<tr>
<td>21</td>
<td>0.2</td>
<td>0.2</td>
<td>0.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.000</td>
</tr>
<tr>
<td>22</td>
<td>0.2</td>
<td>3.9</td>
<td>3.0</td>
<td>0.27</td>
<td>1.31</td>
<td>0.93</td>
<td>0.23</td>
<td>0.214</td>
</tr>
<tr>
<td>23</td>
<td>0.2</td>
<td>3.5</td>
<td>3.7</td>
<td>0.30</td>
<td>1.19</td>
<td>0.83</td>
<td>0.22</td>
<td>0.183</td>
</tr>
<tr>
<td>24</td>
<td>0.2</td>
<td>3.4</td>
<td>3.3</td>
<td>0.31</td>
<td>1.16</td>
<td>1.10</td>
<td>0.21</td>
<td>0.231</td>
</tr>
<tr>
<td>25</td>
<td>0.2</td>
<td>3.2</td>
<td>3.2</td>
<td>0.31</td>
<td>1.09</td>
<td>1.00</td>
<td>0.20</td>
<td>0.200</td>
</tr>
<tr>
<td>26</td>
<td>0.2</td>
<td>3.2</td>
<td>3.0</td>
<td>0.31</td>
<td>1.09</td>
<td>1.00</td>
<td>0.19</td>
<td>0.290</td>
</tr>
<tr>
<td>27</td>
<td>0.2</td>
<td>3.2</td>
<td>3.0</td>
<td>0.31</td>
<td>1.09</td>
<td>1.00</td>
<td>0.19</td>
<td>0.290</td>
</tr>
</tbody>
</table>

Average Specific Rate, $K_2 = 0.3212$, $v =$ gas yield, $v_t =$ volume of gas at time t, $v = (v_t - v_o)$

Determination of the Order of the Biogas Generation

![Figure 2a: Order of the reaction Kinetic of volume of gas yield with time](ht\ty)
The Kinetics of the Biogas Generation

Table 1, Figures 2a-c, present the changes in yield with time, graphical determination of the reaction order for the process and other quantities needed to calculate the rate of the reaction respectively starting from the 5th day to the 27th day of the production (the lag and exponential phase of bacterial growth). Figure 2a, b and c, the linearity of the graphs (correlation coefficient, R²) tend to one and graphs 2a and 2c having positive slopes. It implies that production process followed initial rate pseudo second order. The reaction rate constant K₂, was evaluated using the Fixed-Time kinetics equation as showed in equations 3 (where K₂ is the Specific rate constant for second order reaction, t is the reaction time, V₀ is the initial yield, Vₜ is yield measured at time, t and V is the change in volume of gas yield (Vₜ-V₀) . An average specific rate constant, K₂ of 0.3212 ml⁻¹ day⁻¹ was determined. This evaluation was in line with [24], who used a fixed-time method in finding out the rate constant of Biogas production from admixture of water hyacinth.

CONCLUSION

In this work, the biogas was generated from pumpkin straws using a digester of 11320 cm³ installation capacity. The kinetics analyses indicated initial rate pseudo second order reaction while the average specific rate constant was 0.3212 cm³ day⁻¹

ACKNOWLEDGEMENTS

I wish to eulogize my able supervisors; Assoc. Prof. Afiukwa J. N and HOD, Industrial Chemistry and Dr. S. O. Ngele, for their kind disposition towards the realization of this study. I cannot thank you enough for your time, knowledge and encouragement given to this work both in supervision and painstakingly reading through the
The Impact of Mesophilic and Thermophilic Anaerobic Digesters

REFERENCES

