ABSTRACT
In recent years, internet revolution resulted in an explosive growth of multimedia applications. This rapid advancement of internet made it very easy to send data, the data may be of any form. If the data of Patient’s Personal Health is to be send then there is misnomer of privacy that it easy to modify and misuse the PHR of someone patient through hacking. ECG WATERMARKING is one of the proposed solution to protect PHR from unauthorised parties. To achieve security of personal health records we can use encryption to encrypt the data before sending it. In this paper, we explained the literature on PHRs including the design, functionality, implementation, applications, outcomes, and benefits. As Primary care physicians play an important role in patient health, PHRs are likely to be linked to physician electronic medical record systems.

KEYWORDS: PHRs, EMR, PCC, PSNR, WPRD.

INTRODUCTION
Personal Health Record (PHR) refers to the internet-based portals or computer-based applications that records patient confidential information in electronic version. The availability of medical information on the web has made patients much more aware of symptoms, diagnostic tests, diseases, and treatment options. Most of the people now a day’s keeps health records for themselves and their families [1, 2]. The patients confidential information sent through the public network should be protected and secure. Patient can control who will use his/her confidential health information, such as name, address, telephone number, and Medicare number and who can access data. Monitoring patients at their home can reduce the increasing traffic at hospitals and medical centres. The primary goal is to provide confidentiality, integrity, and availability. Many trials of electronic personal health record systems (PHRs) have shown that they supplement and improve patient and family access to knowledge for self-management of health and wellness issues [3]. PHRs were defined as electronic or paper-based collections of health or wellness data arising from multiple sources about an individual’s health, that are managed, controlled, or shared by that individual or designate. Growth in PHR use parallels the adoption of electronic medical record systems by primary care physicians. Primary care physicians play a predominant role in advising and supporting patients in education and health self management [4]. PHRs have the potential to change and possibly to improve patient–provider relationships, enhance patient–physician shared decision making, and enable the healthcare system to evolve toward a more personalized medical model [5]. The main aim of watermarking is to hide patient’s confidential data and other physiological information in ECG images. ECG images is used because the size of ECG is large compared to other medical images. Patients ECG images and other physiological readings such as temperature, blood pressure, glucose reading, position, etc., are collected at homes by using Body Sensor Networks (BSNs) will be transmitted and diagnosed by remote patient monitoring systems. At the same cost that the patient confidentiality is protected against intruders while data traverse in open network and stored in hospital servers. The aim is to show that both the Host ECG and watermarked ECG signals can be used for diagnoses and the difference would be undetectable.

SYSTEM PARAMETERS
System parameters relate to the characteristics of PHR systems
Content
The information included in PHRs and who can use that information is great concern. Information from practitioner sources should use easy-to-understand language. Information entered by patients may not be as complete, accurate, and organized as data
exchanged between healthcare providers [6,7]. Content must be important, understandable, and credible to patients and their caregivers. Physician experience has shown that patient problem lists, clinical notes, medication and allergy data, and laboratory and diagnostic test results can be shared with patients [8, 9]. An attempt should be made to adjust office workflows so physicians can discuss results with patients before they appear in online records.

B. Architecture

Allowing patients to enter or view their own health data in their healthcare provider’s EMR can convey much more to the patient than stand-alone PHRs, enabling patients to gather their entire fragmented medical history in one place. Information that patients may keep for their personal use may also be valued by healthcare providers. A personally controlled PHR, integrated with a primary care EMR, can manage communications for prescriptions and appointments at reasonable cost. System interoperability is critical to giving consumers access to health records in hospital, physician, and laboratory systems [10, 11, 12].

C. Privacy and Security

Consumers are very much concerned about the privacy and security of their health information. Current security protection mechanisms need to be enhanced for record protection, but to maintain privacy, and security levels must not become so tight that health records are unusable. However wireless transmission of patient medical data, including the privacy, integrity, and confidentiality of the data, and the authentication and authorization of users are great concern [13, 14].

D. Functionality

PHR functionalities can be classified as: (1) information collection, (2) information sharing and exchange, and (3) information self-management. Functionalities include sending and receiving electronic messages to and from doctors’ offices; completing prescription renewal forms, appointments, and referral authorizations; viewing lists of current medications and allergies; and accessing health and practice information. Decision support can also assist patients in managing chronic illnesses, based on monitoring data. The nature of the patient’s illness affects preference for functionalities.

I. PHR’s Purpose

The purposes of PHR are outlined as:

- Easy Communication to patient
- Education and lifestyle change
- Health self-management
- Adoption, acceptance, and usability

RESULT & DISCUSSION

We developed wavelet based ECG watermarking algorithm for protecting patient confidential data. Various ECG signals are used for the experimentation. We calculate various quality measures to evaluate the performance of the developed wavelet based ECG watermarking system. We measure the quality of watermarked images in terms of PSNR (Peak Signal to Noise Ratio), MSE (Mean Square Error), Correlation and Percentage Residual Difference (PRD). The various quality measures used in this thesis is calculated using following equations.

\[
\text{MSE} = \frac{\sum_{r=1}^{M} \sum_{c=1}^{N} (T(r,c) - T'(r,c))^2}{MN}
\]

\[
\text{PSNR} = 10 \log_{10} \left(\frac{R^2}{\text{MSE}} \right)
\]

Where \(T(r,c) \) is the original image and \(T'(r,c) \) is the resultant watermark-image, \(r \) and \(c \) are the number of rows and columns in the input images, respectively. \(R \) is the maximum fluctuation in input image data type or is the maximum intensity value of image.

Similarly PRD measure of each sub-band is calculated as

\[
\text{WPRD}_{j} = \sqrt{\frac{\sum_{i=1}^{N} (c_i - \tilde{c}_i)^2}{\sum_{i=1}^{N} (c_i^2)}}
\]

where \(c_i \) is the original coefficient within sub-band \(j \) and \(\tilde{c}_i \) is the coefficient of sub-band \(j \) for the watermarked signal. The embedded text message of the implemented wavelet based ECG watermarking is shown in figure 1.
The file contains general information of patient like address, phone number, file number, name as well as disease related reports.

Figure 2 shows the sample of Normal original ECG image A1. We take five normal ECG images of person and verify the average performance of implemented system in terms of PSD, PSNR, MSE, Normalized Cross correlation and Average Difference. Figure 3 shows the wavelet ECG watermarked image A1 which is an original ECG image with patient confidential information.

The wavelet-based ECG watermarked image shown in figure 3 seems to be same as that of original image however the image contains patient information. The implemented ECG watermarking system hides the patient information efficiently and at the same time preserves the image quality of sample ECG images.

We take five normal ECG images of different person having different quality and embed the patient information shown in figure 1. The various performance metric evaluated for the developed system is shown in table 1.

<table>
<thead>
<tr>
<th>Normal ECG Image</th>
<th>% PSD</th>
<th>PSNR</th>
<th>MSE</th>
<th>Normalized Cross-correlation</th>
<th>Average Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>0.0316</td>
<td>70.3573</td>
<td>0.0060</td>
<td>1.0000</td>
<td>0.0087</td>
</tr>
<tr>
<td>B2</td>
<td>0.1921</td>
<td>55.7150</td>
<td>0.1744</td>
<td>0.9996</td>
<td>0.0920</td>
</tr>
<tr>
<td>B3</td>
<td>0.0897</td>
<td>61.0966</td>
<td>0.0505</td>
<td>0.9999</td>
<td>0.0365</td>
</tr>
<tr>
<td>B4</td>
<td>0.1381</td>
<td>57.6105</td>
<td>0.1127</td>
<td>0.9998</td>
<td>0.0587</td>
</tr>
<tr>
<td>B5</td>
<td>0.1871</td>
<td>55.0216</td>
<td>0.2046</td>
<td>0.9995</td>
<td>0.1258</td>
</tr>
</tbody>
</table>
CONCLUSION
The aim of this paper is to describe the PHR system, their merits, their features and benefits to consumers/patients. We found many relevant papers, indicating a generally growing interest in PHR use. We implement the wavelet based ECG signal watermarking which hides the patient confidential information in ECG images. The performance of the developed system is evaluated in terms of various quality metrics. The developed system performs efficiently to hide the information and at the same time preserve image quality.

REFERENCES