INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

INTELLIGENT OPTIMIZATION AND SCHEDULING OF NETWORKED CONTROL SYSTEMS USING NEURAL NETWORK

Fatin I. Telchy

ABSTRACT

This paper presents the use of Neural Networks (NN) for transmission time scheduling for the Networked Control System (NCS) where a network is widely used to connect sensors and actuators to the control systems. The need to respect typical timing constraints of the applications supported in these systems requires suitable scheduling strategies in order to devise an appropriate sequence for transmission of the information produced by the processes using the communication system.

The proposed model for NCS scheduling assesses its computational complexity, pointing out the drastic reduction in the time needed to generate a schedule as compared with the algorithmic scheduling solutions. The applied approach allows real-time NCS scheduling and makes it possible for the scheduling table to adapt the changes in process control features. Finally an on-line scheduling strategy is developed based on the neural model which can achieve real-time adaptation of the scheduling table changes in the manufacturing environment.

KEYWORDS: Scheduling, Network Control System, Neural Network, Rate Monotonic Algorithm.

INTRODUCTION

Major advancements over the last decades in wired and wireless communication networks gave rise to the new paradigm of Networked Control Systems (NCS). Within this paradigm, sensing and actuation signals are exchanged among various parts of a single system or among many subsystems via communication networks [1]. With the development of NCS, more and more researchers focus on the scheduling of network to realize the cooperation between network bandwidth requirement and control performance and can improve the Quality of Service (QoS) of network and reduce the chance of collision and congestion in network, then it can reduce the network induced time delay and the rate of data packet loss, so scheduling has great significance on improving the performances of NCS [2]. The most important part of network scheduling issue is how often a plant should be scheduled to transmit the data and with what priority the packet should be sent out regardless how the packet gets to the destination from the source efficiently, and what to do if the route is congested, these problems are up to the routing algorithms and congestion control algorithms [3].

The use of the communication network in the feedback control systems (wherein the control loops are closed through a real-time network) makes the analysis and design of NCS complex. Scheduling of the network tasks has to be involved when a set of NCSs are connected to the network which competes for network bandwidth [4].

The problem of network scheduling of NCS is finding an optimal/feasible schedule that can minimize a given performance measure. Network scheduling in NCSs is comparable to CPU scheduling in hard real time computing systems, where a set of concurrent CPU tasks are executed on a single CPU with timing constraints. Both cases involve allocating a shared resource to a set of a concurrent tasks; both involve frequent invocations of concurrent tasks, and both tasks have real time constraints and have deadlines to be met. However, in the case of network scheduling in NCS, the shared resource becomes the network instead of the CPU processor, and the execution of a real time task has been replaced by the transmission of a data packet [5].

Many contributions have been accomplished in this field; in Zhang (2001) [6] considered the scheduling of a set of controls system when their feedback control loops are closed through a communication network using Rate Monotonic Scheduling (RMS) algorithm. The optimal scheduling with RMS schedulability constraints with NCS stability constraints had been considered, Branicky et. al. (2002) [4] applied RMS algorithm for optimal scheduling of set of NCSs. They worked on scheduling when a set of NCSs are connected to the network and arbitratrix for network bandwidth. They formulated the optimal scheduling...
The proposed Intelligent NFS

The proposed Neural Feedback Scheduler (NFS) technique consists of two intelligent stages: The first stage produces optimal sampling periods by using Feedforward Neural Network (FFNN) named as Neural Network Optimizer (NNO) which replaces traditional optimization algorithm. The second stage of the NFS, schedules the NCS tasks using another Feedforward Neural Network (FFNN) named as Neural Network Scheduler (NNS), which works online and replaces the traditional offline RMS algorithm. This leads to improvement in the overhead (optimize the required time for a task to be completed) and computational complexity.

The developed framework of the intelligent NFS is shown in Figure 1. The highlighted block illustrates the proposed technique which effectively provides high efficiency and low overhead with respect to the convenient applied methods as can be seen in [4, 7, 2].

Optimized Sampling Periods

Liu and Layland [8], showed that RMS is optimal among all fixed priority assignments in the sense that no other fixed priority algorithm can schedule a task set that cannot be scheduled by RMS. Accordingly, RMS has been chosen as scheduling method for NCS, and to be developed to overcome the issues of finding an optimized sampling periods and overhead issue, i.e. develop the system performance by employing an intelligent technique.

The performance measure function of the NCS is associated with the control cost function $J_s(h_i)$ as function of transmission period (h_i), the selection of the performance measure function is crucial in the optimization problem. It directly relates the control cost to the NCS transmission period h_i [6].

The formulation of the optimization problem is [6]:

$$\text{minimize } J = \sum_{i=1}^{n} J_i(h_i) \quad (1)$$

Subjected to:

a) RMS Algorithm schedulability constraints:

$$h_1 \leq h_2 \leq h_3 \quad (2)$$

$$0 \leq h_i - \tilde{h}_i \leq (2^{\frac{n}{i}} - 1) \quad i = 1, ..., n \quad (3)$$

b) And to: NCS stability constraints:

$$h_i \leq \frac{h_{true}}{2} - 2 \tau_i \quad i = 1, ..., n \quad (4)$$

$$h_i \leq \tilde{h}_i + \frac{1}{i} \quad i = 1, ..., n \quad (5)$$

where:

$$\tilde{h}_i = \frac{\max C_i}{C_i h_i U} \quad (6)$$

The worst-case blocking time of each NCS transmission, h_i, needs to be taken into account when considering h_i. The minimization process is carried out using MATLAB 2012 function *fnmincon*, which finds the minimum constrained of a nonlinear multivariable scalar function starting at an initial estimate. This is generally referred to as constrained nonlinear optimization or nonlinear programming.

According to previously described equations (1-6), the implemented algorithm will be applied as illustrated in the block diagram of Figure 2.

Figure 1: Neural Feedback Scheduler "NFS"

Figure 2: Block Diagram for Offline Creating Optimized Sampling Periods’ Dataset

Intelligent Optimization of Sampling Period “NNO”
In this section an intelligent technique will be developed based on FFNN. It will be named Neural Network Optimizer (NNO) to replace the traditional optimization method of SQP that applied to obtain optimal sampling period.

![Diagram of Neural Network Optimizer Procedure]

Figure 3: Neural Network Optimizer Procedure

In traditional applied scheduling methods, an optimal sampling periods is usually obtained offline by using non-linear optimization method to get a value that is suitable for the system stability constraint and RMS constraints and this repeated in each feedback iteration. But in the proposed method, the required dataset for NNO training is obtained offline for one time by using traditional optimization method (SQP), then suitable NNO has been carefully chosen to be trained based on the previously obtained dataset, later on, the obtained NNO can be used online as adaptive standalone unit to obtain the optimal sampling period as shown in Figure 3.

Figure 4 shows the proposed NNO, there is only one hidden layer apart from the input and output layers in the NNO. Since FFNN with only one hidden layer are able to approximate arbitrary functions with arbitrary precision that are continuous on closed intervals, one hidden layer is sufficient for guaranteeing solution accuracy [9].

![Diagram of Developed NNO Structure]

Figure 4: The Developed NNO Structure

The inputs for the NNO is the Transmission Time (C) and the Utilization (U) which processed by the hidden layer and iteratively produced the Sampling Periods (h), using this intelligent technique will overcome complexity raped application of the optimization.

Intelligent Scheduling by Neural Network “NNS”

When a set of Control System (CS) plants are connected to the network and arbitrate for network bandwidth, based on priority scheduling algorithm such as RMS algorithm, a “faster” plant (i.e., requiring higher transmission rate) is given higher priority over a slower plant. The RMS algorithm can be implemented on priority-based networks, such as Controller Area Network (CAN) and DeviceNet, where the priority of the message can be incorporated into the message identifier [6].

In this work, another intelligent technique will be developed using FFNN. It will be named Neural Network Scheduler (NNS) to replace traditional RMS algorithm to schedule NCS tasks.

In RMS algorithm, transmission time (C), sampling period (h), and tasks priority (P) are required for offline scheduling NCS packet transmission. Accordingly the required dataset has been manually obtained offline by applying RMS on set of tasks to prepare dataset which is used later as training data for NNS. The priority condition depended on the sampling period $h_1 < h_2 < h_3$. Suitable NNS will be chosen with proper number of neurons, based on previous obtained dataset for NNS training. In turn NNS can be used online as adaptive standalone unit to schedule the NCS tasks as shown in Figure 5.

![Diagram of Developed NNS Technique]

Figure 5: The Developed NNS Technique

The NNS structure consist of only one hidden layer apart from the input and output layers, as shown in
Figure 6. The sampling period \((h) \) forms the NNS’s input and the scheduling sequence \((Seq.) \) forms the output.

![The Developed NNS Technique.](image)

The inputs for the NNS is \(h \) which processed by the hidden layer and iteratively produced task sequence \((Seq.) \), using this intelligent technique will schedule the NCS tasks instantaneously.

In order to determine the suitable number of hidden neurons, i.e. the value of \(M \), neural networks of different sizes \((4, 8, \text{and } 16) \) has been compared and it was found that the most applicable one was with \(M=8 \), as the performance and Gradient values equals \(5.49 \times 10^7 \) and \(7.64 \times 10^7 \) respectively. The FFNN has been used to replace the RMS method to scheduling periodic tasks for this case, the proposed \(N \) has been trained by using the last obtained optimal sampling period and the scheduling constraints to determine the priority \(h_1 \leq h_2 \leq h_3 \), then the proposed \(N \) employed to work online and stand alone to schedule NCS tasks.

Verification of NN Scheduling Techniques for NCS

The power and effectiveness of the developed Neural Network techniques have been examined through applications to solve NCS problems, the following examples illustrate both creating optimal sampling periods using \(SQP \) optimization method and the \(NNO \) followed by \(NNS \). The illustrated examples present the effectivity of the developed \(NFS \) by employing different cost functions, constraints, and transmission times.

Example 1: Linear Cost Function with Constant Transmission Time

A set of scalar plants have been considered and represented by the state space equations are shown below and the systems properties are shown in Table 1 [2].

\[
\begin{align*}
\dot{x}_1 &= 20x_1 + u_1, & u_1 &= -40x_1, \\
\dot{x}_2 &= 15x_2 + u_2, & u_2 &= -35x_2, \\
\dot{x}_3 &= 10x_3 + u_3, & u_3 &= -30x_3
\end{align*}
\]

so, the closed loop system will be; \(\bar{A}=-20 \). Let the tasks transmission times are known \(C_1=C_2=C_3=0.004s \), also the priorities are given \(P_1=1, P_2=2, \text{and } P_3=3 \), \(h_{\text{wb}}=900ms \). The goal of the design is to assign task periods such that the overall system cost is minimized. The overall cost \(J \) is defined as [2]:

\[
J_{\text{all}} = \frac{3+\sqrt{3}}{6}(p_1h_1 + p_2h_2 + p_3h_3) + p_1r_1 + p_2r_2 + p_3r_3
\]

where \(p_i \) is weight coefficient, corresponding to the priority of control system. And \(J \) is performance index function of each control loop. \(r \) is the input-output latency, and \(h \) is the sampling interval. The optimal sampling period can be estimated by the optimization analysis and the previous function which is minimized subject to utilization constraint in Equations (3 and 4):

Table 1: Information Data for Examples 1

<table>
<thead>
<tr>
<th>C*</th>
<th>CS1</th>
<th>CS2</th>
<th>CS3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b_{li}^*)</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>(\tau_1^*)</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>(h_{\text{wb}}^*)</td>
<td>900</td>
<td>900</td>
<td>900</td>
</tr>
<tr>
<td>Linear Constraint* (h_{\leq})</td>
<td>37</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>Initial (h_{b0}^*)</td>
<td>16.36</td>
<td>9.65</td>
<td>15.58</td>
</tr>
</tbody>
</table>

The measure unit for time is milliseconds.

In order to create the required dataset for \(NNO \)’s training process, transmission times \(C_1, C_2, \text{and } C_3 \) were selected from \(1ms \) to \(10ms \) with increments of \(1ms \). For all possible values of these parameters, applying \(SQP \) to solve the cost equation offline results in totally 1000 sets of sample data.

Simulation Results Using NNO

In order to determine the number of hidden neurons, i.e. the value of \(M \), \(FFNN \) of different sizes \((2, 4, 6, 8, 12, 16, \text{and } 20) \) has been compared and the most applicable one was with \(M=20 \), as the performance and Gradient values equals \(4.71 \times 10^7 \) and \(9.89 \times 10^6 \) respectively. Given that the performance is comparable. From this perspective, it is set that \(M = 20 \) because of the good performance of corresponding neural network and the fast reaching to the required results.

Several number of neurons \((M) \) has been tested to reach to the best NN performance, the performance and the gradient form the most important keys to evaluate the best NN structure, the best two choices of many attempts was 16 and 20 Neuron and according to below reasons 20 Neuron has been chosen due to the minimum performance value \((4.71 \times 10^7) \), Gradient \((9.89 \times 10^6) \), \(Mu \) \((1 \times 10^6) \) which are lower than appears in 16 neurons NN.

http://www.ijesrt.com
A comparison has been made between the optimal sampling periods gained from regular SQP method and between the proposed FFNN are shown in Table 2, also schedulability test has been performed on the neural networks results to approve the effectiveness of the proposed technique as shown from the calculations below. And as seen from the results all the selected transmission periods are schedulable using RMS algorithm.

Table 2: Results from Traditional SQP and NNO

<table>
<thead>
<tr>
<th></th>
<th>h_1 (ms)</th>
<th>h_2 (ms)</th>
<th>h_3 (ms)</th>
<th>Min J</th>
<th>$E < 0.7798$</th>
<th>Overhead (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOP</td>
<td>0.0213</td>
<td>0.0150</td>
<td>0.0123</td>
<td>40.0695</td>
<td>0.7797</td>
<td>0.6334</td>
</tr>
<tr>
<td>NNO</td>
<td>0.0209</td>
<td>0.0156</td>
<td>0.0125</td>
<td>40.0707</td>
<td>0.7678</td>
<td>0.011036</td>
</tr>
</tbody>
</table>

The above results show that overhead improved in NNO by 98.26% than SQP and utilization improved by 1.54%, although the J value of NNO is greater than SQP, but NNV gave schedulable NCS tasks while SQP gave tightly schedulable tasks.

NNS to Schedule Transmission Time

After the training process, the proposed NNS is ready to do scheduling tasks, Figure 7 shows scheduling of Example 1 tasks', where sampling periods are $h_1=0.0212$, $h_2=0.0153$, $h_3=0.0124$, and transmission time $C_1=C_2=C=0.004$, where h_3 is higher priority as it has smaller sampling period and h_1 is the lower priority. It is clear that NNS could schedule the three tasks according to RMS conditions which bring new intelligent technique that minimize the overhead and use low memory.

Example 2: Exponential cost function with constant transmission time

To evaluate the performance of CS with their feedback control loops which are closed through a communication network, a set of scalar plants has been considered, represented by $\dot{x}=Ax+Bu$, with $A=25$, 20, 5, $B=1$, and $K=50, 45, 30$, respectively. The state space equations of the systems are shown below and the systems information is listed in Table 3 [4].

Equations 3 & 5 have been used as RMS for NCS stability constraints. The upper bounds on these plants’ transmission periods that preserves their stability, $h_{true, i}$, can be calculated as [6]:

$$h_{true} = \frac{1}{A} \ln \frac{\frac{K + 1}{A}}{\frac{K}{A}} - e^{25h_1 + 1.25e^{20h_2 + 5e^{5h_3}}}$$

As the transmission time according to DeviceNet specification is 4 ms [12], so, for the purpose of creating sample dataset for NNO training process, the ranges of C_1, C_2, C_3 has been specified from 1ms to 10ms with increments of 1ms, applying SQP to solve the cost equation offline results in totally 1000 sets of sample data.

Simulation Results Using NNO

Same procedure steps for Example 1 has been used for this case to get efficient NNO with 3 layers (one input layer, one hidden layer with 20 neuron, one output layer).

A comparison has been made between the optimal sampling periods gained from regular SQP method and between the proposed NNO Table 4, also schedulability test has been performed on the neural networks results to approve the effectivity of the proposed techniques as shown from the calculation below. By applying NNO with $M=20$, the following analysis have been obtained:
Table 4: Results from Traditional SQP and NNO

<table>
<thead>
<tr>
<th></th>
<th>(b_1) (ms)</th>
<th>(b_2) (ms)</th>
<th>(b_3) (ms)</th>
<th>Min J</th>
<th>(U_t)</th>
<th>Overhead (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQP</td>
<td>0.0146</td>
<td>0.0150</td>
<td>0.0167</td>
<td>8.5639</td>
<td>0.7802</td>
<td>1.2491</td>
</tr>
<tr>
<td>NNO</td>
<td>0.0146</td>
<td>0.0150</td>
<td>0.0168</td>
<td>8.5646</td>
<td>0.7778</td>
<td>0.009785</td>
</tr>
</tbody>
</table>

The above results show that overhead improved in NN by 99.22% than SQP and utilization improved by 0.14%, although the \(J \) value of FFNN is greater than \(\text{SQP} \), but FFNN gave schedulable \(\text{NCS} \) tasks while \(\text{SQP} \) gave tightly schedulable tasks as clear from the above utilization values.

As seen from the above results all the selected transmission periods are schedulable according to \(\text{RMS} \) algorithm constraints.

Adapting Neural Network for Task Scheduling by NNS

After training NNS is ready process to do scheduling task, Figure 8 shows scheduling of Example 2 tasks, where sampling periods are \(h_1=0.0146, h_2=0.0150, h_3=0.0168 \), and transmission time \(C_1=C_2=C_3=0.004 \), where \(h_1 \) is higher priority as it has smaller sampling period and \(h_3 \) is the lower priority.

![Figure 8: Scheduling Results by NNS](image)

Example 3: Linear cost function with variable transmission time

The assumed design goal for this example is to select sampling periods \(h_1, h_2, \ldots, h_i \) such that a weighted sum of the cost function:

\[
J_{ail} = \frac{3+\sqrt{2}}{6} (p_1h_1 + p_2h_2 + p_3h_3) + p_1\tau_1 + p_2\tau_2 + p_3\tau_3
\]

The NCS stability constraints [7] is \(h_i \leq h_{bw} + \tau_i \), \(i=1, \ldots, n \), where \(h_{bw} \) is the received by the control system’s bandwidth, which is assumed equal to 800ms. The full Example 3 data information is shown in Table 5.

Table 5: Information Data for Example 3

<table>
<thead>
<tr>
<th></th>
<th>(CS_1)</th>
<th>(CS_2)</th>
<th>(CS_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C^*)</td>
<td>2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>(p_i)</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>(b_{Li}^*)</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>(\tau_i^*)</td>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>(h_{bw}^*)</td>
<td>800</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>Linear Constraint (h_i^* \leq)</td>
<td>34</td>
<td>32</td>
<td>28</td>
</tr>
<tr>
<td>Initial (h_o^*)</td>
<td>7</td>
<td>31</td>
<td>28</td>
</tr>
</tbody>
</table>

The measure unit for time is miliseconds

The optimal sampling period can be estimated by the optimization analysis and the previous function which is minimized subject to below utilization constraint as in Equation 3.

Simulation Results Using NNO

A comparison has been made between the optimal sampling periods gained from regular SQP method and between the NNO Table 6, also schedulability test has been performed on the NNO results to approve the effectivity of the proposed technique as shown from the calculation below.

Table 6: Results from Traditional SQP and NNO

<table>
<thead>
<tr>
<th></th>
<th>(h_1) (ms)</th>
<th>(h_2) (ms)</th>
<th>(h_3) (ms)</th>
<th>Min J</th>
<th>(U_t)</th>
<th>Overhead (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQP</td>
<td>0.0153</td>
<td>0.0171</td>
<td>0.0140</td>
<td>29.0722</td>
<td>0.7803</td>
<td>0.7204</td>
</tr>
<tr>
<td>NNO</td>
<td>0.0156</td>
<td>0.0176</td>
<td>0.0142</td>
<td>29.0736</td>
<td>0.7644</td>
<td>0.009602</td>
</tr>
</tbody>
</table>

The above results show that overhead improved in NN by 98.67% than SQP and utilization improved by 1.97%, although the \(J \) value of NNO is greater than SQP, but NN gave schedulable NCS tasks while SQP gave tightly schedulable tasks.

NNS to Schedule Tasks

In order to determine the suitable number of hidden neurons, i.e. the value of \(M \), neural networks of different sizes (4, 8, and 16) has been compared and it was found that the most applicable one was with \(M=8 \), as the performance and Gradient values equals \(1.91 \times 10^{-7} \) and \(1.54 \times 10^{-6} \) respectively. Also it can be seen that \(h_3 \) is higher priority as it has smaller sampling period and \(h_2 \) is the lower priority. The NCS results is shown in Figure 9.
CONCLUSION
This paper presents the neural model for scheduling process and assesses its computational complexity, pointing out the drastic reduction in the time needed to generate a schedule as compared with the algorithmic scheduling solution. New scheduling technique has been proposed as on-line scheduling strategy based on the neural model which can achieve real-time adaptation of the RMS algorithm.

The traditional scheduling methods complicates the problem of scheduling as it requires the use of computationally complex algorithms to optimize sampling periods.

In this work, an alternative approach to scheduling based on a Feedforward Neural Network model and show how it overcomes the problem of the computational complexity of the algorithmic solution. It can be noticed that the results of 98.26% , 99.22%, and 98.67% in overhead improving for mentioned cases by using NNO with respect to traditional SQP, in addition to the improvement of traditional RMS algorithm by using NNS which act as stand-alone technique for NCS scheduling tasks.

The developed optimization and scheduling provide more flexibility, minimum overload and lower utilization than the traditional methods.

REFERENCES
