
International Journal of Engineering Sciences & Research 
Technology 

(A Peer Reviewed Online Journal) 
Impact Factor: 5.164 

 

IJESRT  
 

 
 
 
 
 

  

Chief Editor                 Executive Editor    

Dr. J.B. Helonde                    Mr. Somil Mayur Shah 

 

                    Website: www.ijesrt.com                             Mail: editor@ijesrt.com 
O 

Correspondence Address: 116, Sukhdev Nagar Ext-1, Airport Road, Indore – 452005, Madhya Pradesh, INDIA 
 
 

            IJESRT: 13(8), August 2024                    ISSN: 2277-9655 

              
I 
 
                 X  

http://www.ijesrt.com/
mailto:editor@ijesrt.com


   ISSN: 2277-9655 

[Chapi* et al., 13(8): August, 2024]   Impact Factor: 5.164 

IC™ Value: 3.00   CODEN: IJESS7 

http: // www.ijesrt.com                 © International Journal of Engineering Sciences & Research Technology 

 [25] 

    
IJESRT is licensed under a Creative Commons Attribution 4.0 International License. 

IJESRT 
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH 

TECHNOLOGY 

STATE OF RESEARCH ON THE STRATEGY FOR MINIMIZING EQUIVALENT 

CONSUMPTION FOR SOLVING THE PROBLEM OF OPTIMAL CONTROL OF 

HYBRID VEHICLES 

 
Yahouza Chaibou Chapi3, Ousman Mahamadou2, Noma Talibi Soumaïla3*, Boureima Seibou1 

 
1Departement Génie Electrique de l’Ecole des Mines de l’Industrie et de la Géologie (EMIG), BP : 

732, Niamey-Niger. 
2Departement Génie Mécanique de l’Ecole des Mines de l’Industrie et de la Géologie (EMIG), BP : 

732, Niamey-Niger. 
3Laboratire d’Energétique, d’Electronique, d’Electrotechnique et d’Informatique Industrielle de 

l’Université Abdou Moumoni (UAM), BP : 237, Niamey Niger. 

 

DOI: https://doi.org/10.57030/ijesrt.13.8.3.2024 

 

ABSTRACT 
Long considered essential in our lifestyles, the automobile vehicle is today at the heart of a multitude of nuisances 

including atmospheric pollution, the release of greenhouse gases and the depletion of fossil fuels. Faced with these 

harmful effects, research efforts are continuing to accommodate modern transport needs and meet anti-pollution 

regulations. It is therefore necessary to develop alternative forms of transport. It is in this context that research is 

focusing on the development of hybrid vehicles. A hybrid vehicle is powered by two motors (electric motor and 

thermal engine powered by two energy sources (the fuel tank and the battery). It is therefore necessary to properly 

manage the distribution of power flows between the thermal engine and the electric motor in order to reduce the 

vehicle's fuel consumption. The role of the energy management system is to choose at any time the best 

distribution of power between the different energy sources so as to minimize fuel consumption and pollutant 

emissions The energy performance of a hybrid vehicle depends mainly on the performance of this system. This 

article presents a state of research on the strategy of minimizing equivalent consumption. The main objective of 

this method is to minimize the fuel consumption of the vehicle and reduce the relative emission of harmful 

emissions. 

KEYWORDS: Hybrid electric vehicle, Modeling, Control strategy, Energy management, ECMS 

1. INTRODUCTION 
Faced with the future shortage of fossil resources and environmental issues, there is a need to accommodate 

modern travel needs to meet anti-pollution standards put in place by governments to limit harmful emissions. It is 

with this in mind thatcar manufacturers committo develop more economical technologies in terms of fuel 

consumption in order to reduce the emission of CO2, polluting gases and the depletion of oil. The most ideal 

solution is the electrification of the vehicle powertrain. The electric vehicle is powered by an electric motor 

powered by a battery. It is a vehicle with no CO2 emissions since it does not require any combustion of fossil 

fuels. In addition, its traction chain has the advantage of allowing reproduction of electrical energy by recovery 

of kinetic energy through regenerative braking. However, due to the use of the battery, the electric vehicle does 

not constitute a viable alternative to the thermal vehicle because it has two major disadvantages : the short 

autonomy compared to the thermal vehicle and the cost [1, 2, 3, 4]. 

Indeed, after a single complete battery recharge, most electric vehicles on the market have less than 500 km of 

range, while thermal vehicles with a full fuel tank have a range of around 1000 km. 

The other weak point is the recharge time of electric vehicle batteries. Battery recharge time depends on the 

electrical power of the charging source. Half an hour of charging gives a respective range of 27 km for an 11 kW 
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domestic socket, 136 km for a 50 kW public charging station and 270 km through a 120 kW super charger. On 

the other hand, refueling for at least 500 km of autonomy can be done in a few minutes [5]. 

While waiting for a generation of electric vehicles with batteries allowing 1000 km of autonomy and charging 

technologies in less than 5 minutes, the hybrid vehicle is an ideal solution for this transition phase from thermal 

vehicles to electric vehicles. The presence of two motors (an electric motor and a thermal engine) and two energy 

sources requires the presence of a controller which will simultaneously control the two motors. In terms of 

consumption, the performance of a plug-in hybrid electric vehicle depends largely on the performance of this 

controller. The specificity of plug-in hybrid electric vehicles lies in recharging the battery through a mains 

electrical outlet, at a public terminal or through regenerative braking. Which requires an internal charger allowing 

this recharging. This makes the design of the energy management system more complex [4, 5, 6]. 

 

2. FORMULATION OF THE OPTIMAL CONTROL PROBLEM 

Since the objective of energy management strategies is to maximize the energy available in the battery and 

minimize fuel consumption, the dynamic system considered is the battery and its state variable is the state of 

charge noted x. 

max

)()(
Q

q
tSOCtx b==   (1) 

The current leaving the battery being the opposite of the current entering, its expression is given by the equation 

2. 

dt

dqb

bI =−      (2) 

The amount of charge stored at each moment in the battery is given by the equation 3. 

−=
t

bb dtIq
0

                   (3) 

max
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Q

tI
tSOC b−
=              (4) 

The equivalent battery diagram allows you to express the nominal voltage of the battery. 

 
Figure 1: Equivalent electrical diagram of the battery [3] 
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We obtain the expression of the state of charge according to the characteristics of the battery. 

maxint
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We define a penalty factor based on the instantaneous SOC making it possible to maintain the SOC around the 

target SOC and between its limit values SOCmax and SOCmin. This penalty factor This penalty factor is assigned 

to the consumption of electrical energy in order to secure the battery. The target SOC is specified based on the 

efficiency of the HV battery. 

The minimization function is the fuel consumption over a speed cycle. 


•

=

ft

t

ctot dtttTtuJ m
0

))(),(),((      (8) 

Where is the instantaneous fuel consumption. 

The minimization problem is also subject to several constraints 

• The terminal constraints on the u command, denoted umin and umax due to the saturations of the 

actuators [2] ; 

thmaxthmin   th  

tmaxtminT TTth 
    (9) 

emaxemin   e  

emaxeminT TTe 
 

• The state of charge of the battery which must not exceed a certain threshold to ensure battery safety [2]. 

XtXtX f += )()( 0  

The minimization problem is therefore formulated by : 


•
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Under the constraints: 

thmaxthmin   th     

tmaxtminT TTth 
 

emaxemin   e           (11) 

emaxeminT TTe 
 

XtXtX f += )()( 0  

 

3. SOLVING THE ENERGY MANAGEMENT PROBLEM OF HYBRID VEHICLES 
In a hybrid vehicle, torque to the wheels is provided by one or both energy chains. The objective of energy 

management is to find, on a given journey, the distribution of power flows, between the two traction chains, which 

minimizes fuel consumption while guaranteeing a given final state of charge of the battery. Algorithms for solving 

this problem are called “power management strategies”. These algorithms are classified into three categories 

namely rule-based methods, optimization methods and methods based on artificial intelligence (figure 2). 
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Figure 2 : Classification of energy management strategies [3, 11] 

 

3.1. Rule-based strategies 

These are strategies based on predefined rules of thumb allowing an action to be carried out from a certain fixed 

threshold. These strategies come from the experiences acquired by experts on the behavior of the different 

components of the powertrain. In general, the operating point of the thermal engine is fixed in its maximum 

efficiency zone and the driver's power demand is supplemented by the electric motor according to the state of 

charge of the battery. 

Rule-based methods are either instantaneous or predictive [2, 3]. 

In instantaneous methods, the control of the vehicle depends solely on its current state while in predictive methods, 

the control comes from the evaluation of a series of commands on a future environment. 

The rule-based methods are closely linked to the parameters of the energy chain components and the rolling 

profile. These strategies include the thermostat method, the power monitoring method, the state machine, fuzzy 

logic, etc. 

The advantages and disadvantages of these strategies are presented below [2]. 

 

Benefits 

• Speed and simplicity of implementation 

• Less intensive in calculation time and memory 

• Guarantee of stable and invariable operation 

Disadvantages 

• Based on the experimental knowledge of experts and are only valid within the area of this expertise 

• No longer meeting current expectations of energy management strategies 

• Very limited and are not optimal in general 

 

3.2. Optimization methods 

These are methods for modeling a system and formulating the optimization problem in order to find solutions. 

They use mathematical tools to find the optimal operating sequence of a system through a cost function to be 

minimized. 

The cost function is generally the total fuel consumption over a speed cycle. 

Optimization methods are classified according to whether they can be embedded in real time (online strategies) 

or intended only for simulation (global optimization methods). Offline global optimization methods are based on 

a priori knowledge of the speed profile. They are therefore intended only for simulation, but are the only ones to 

guarantee global optimality of the control up to modeling errors. Nevertheless, their results can be used to develop 

online methods. 

http://www.ijesrt.com/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


   ISSN: 2277-9655 

[Chapi* et al., 13(8): August, 2024]   Impact Factor: 5.164 

IC™ Value: 3.00   CODEN: IJESS7 

http: // www.ijesrt.com                 © International Journal of Engineering Sciences & Research Technology 

 [29] 

    
IJESRT is licensed under a Creative Commons Attribution 4.0 International License. 

These methods include Dynamic Programming (DP, GA genetic algorithms), simulated annealing, particle testing 

(PSO), Stochastic Dynamic Programming (SDP) [2, 3, 9]. 

Online optimization methods are strategies that can be implemented on real vehicle computers. These are 

instantaneous optimization methods allowing, at any moment, to evaluate the constraints and define the operating 

points of the components of the vehicle's powertrain. Above all, they make it very easy to exploit the predictive 

data available. 

Among these methods we can cite the Equivalent Consumption Minimization Strategy (ECMS), the Pontriagin 

Maximum Principle (PMP), the predictive control model (MPC) [12, 13]. 

 

3.3. Artificial intelligence methods 

With the development of artificial intelligence, energy management strategies increasingly integrate machine 

learning algorithms. These algorithms allow the energy management system to learn to adapt to driving conditions 

in order to optimize energy distribution in real time. 

 

Benefits 

• tackles the problem head on. 

• Can be used to derive applicable online ordering strategies. 

• very useful for adjusting other rule-based management strategies 

Disadvantages 

• modeling and resolution difficulties 

• Requires knowledge of all driving profile information (road and route conditions) 

Expensive in calculation time and memory 

 

 

4. MINIMIZATION OF EQUIVALENT CONSUMPTION (ECMS)  
Having become one of the main directions in the research of energy management strategies, ECMS is a local 

optimization algorithm first developed in 1999 by Paganelli [21]. 

 In ECMS strategies, the optimization problem amounts to calculating an equivalence factor making it possible to 

maintain the state of charge of the battery around a target reference value. This equivalence factor is a conversion 

factor between electrical energy and thermal energy. It makes it possible to bring energy consumption into the 

same energy space in order to determine the optimal control variables [14, 15, 18, 21]. 

Several variants of the CHMS exist depending on how the equivalence factor is evaluated and whether or not 

available external information is integrated. This information may be traffic information, driver information, or 

vehicle information. In the non-adaptive variants (Non Adaptive ECMS) the values of the equivalence factor are 

chosen a priori while the adaptive variants (Adaptive ECMS) allow the equivalence factor to be updated at each 

moment of the journey. Equivalence factor values are selected based on prediction levels of future driving 

conditions. Telemetry ECMS uses information provided by the navigation system to update the equivalence factor. 

In offline ECMS methods, the equivalence factor is optimized by another optimization algorithm such as PSO, 

GA. 

This optimization method involves evaluating the cost function as a sum of fuel consumption and corrected fuel 

consumption. The corrected consumption is calculated using the variation in the battery state of charge. 

As the consumption of the fuel source and the electrical source are not directly comparable, an equivalence factor 

is necessary. This factor can be calculated by the average energy trajectories of the vehicle sources. As component 

yields may differ between operating areas, this methodology is valid for average value assessments [19, 20, 21, 

22]. 

In ECMS policies, the batteryis considered an auxiliary fuel tank. This makes it possible to choose at any time the 

control variables making it possible to minimize the total energy taken from the two reservoirs via an equivalence 

factor which makes it possible to convert the electrical energy into mechanical energy to reduce the two 

consumptions. in the same energy space. 

The energy distribution by the two sources obeys two cases : 

The first case is a discharge of the battery at time t. This corresponds to a quantity of electrical energy taken from 

the battery at that moment. This quantity of energy must be returned to the battery at the higher time t'>t. At this 

moment, the quantity of fuel consumed must ensure the traction of the vehicle and the recharging of the battery 

[23]. 
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The second case corresponds to the storage of electrical energy in the battery (recharging the battery) at a time t. 

At the higher time t’ > t, this stored energy will contribute to vehicle traction and fuel economy [23]. 

 

The energy distribution of the hybrid vehicle according to the operating mode is illustrated in Figure 3. 

 

      

  
 

Figure 3 : Energy distribution of the hybrid vehicle 

 

4.1. ECMS Algorithm Expressions 

The ECMS algorithm has two expressions. The first is the original expression proposed by Paganelli. This is 

illustrated by equation 12. 

 

𝑚̇𝑒𝑞(𝑡) = 𝑚̇𝑐(𝑡) + 𝑚̇𝑏(𝑡)   (12) 

 

Where 𝑚̇𝑒𝑞  is the total equivalent instantaneous consumption, 𝑚̇𝑐  the instantaneous fuel consumption and . 𝑚̇𝑏 

the instantaneous electrical energy consumption. 

 

Instantaneous consumption of fuel and electrical energy is expressed according to the characteristics of the 

shareholders. 
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Where Pth(t) is the power of the heat engine, Pr(t) the required power 

u(t) the vector of control variables, Pb(t) the power of the battery, QLHV the minimum released by the combustion 

of the fuel, ƞth(t) the efficiency of the thermal engine, Pb(t) the power of the battery , s(t) the equivalence factor 
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To ensure battery safety, we define a penalty factor based on the SOC instantly and allowing to maintain it between 

its limit values. This penalty factor is attributed to the consumption of electrical energy. It allows the use of 

electrical energy when the SOC is close to the maximum SOC of the battery and to switch to the thermal engine 

when the SOC is close to the minimum SOC. This makes it possible to delimit the SOC between the two values 

and its maintenance around a target SOC. This SOC target should be specified based on battery efficiency. 
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The power of the heat engine is expressed as a function of the engine speed and torque. 

ththth TP =          (22) 

c

th

th
P

P
=            (23) 

PCIfc HmP =         (24) 

)()()( tPtutP rth

=    (25) 

)())(1()( tPtutP rb

−=   (26) 

)(tu
is the optimal solution of the control variables 

The required power is obtained by establishing the balance which acts on the vehicle. The different forces to which 

the moving vehicle is subjected (traction force Fr, gravity force Fg, rolling resistance Froul, Aerodynamic Drag 

Fa), are represented in Figure 4. 

 

 
Figure 4 : Forces applied to the vehicle [3] 

The equation which governs the longitudinal dynamics of the vehicle, resulting from the application of the 

fundamental principle of dynamics (Newton's second law) is: 
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)()(
)(

tFtF
dt

tvd
m resistr −=     (27) 

 

The vehicle's traction force requested by the driver is: 

acgroular FFFFF +++=     (28) 

By expressing these forces as a function of the characteristics of the vehicle and its environment, we obtain: 

dt

dv
mFAvCmgmgfF dDr ++++= 2

2

1
sincos             (29) 

The power requested by the driver expressed as a function of the force required and the speed of the vehicle is: 

v
dt

dv
mFAvCmgmgfP dDr 








++++= 2

2

1
sincos       (30) 

Where f is the rolling resistance coefficient, ƞ the overall efficiency of the transmission system, α the slope, CD 

the air resistance coefficient, A the frontal wind surface, σ the mass factor which helps convert the rotational 

inertias of the rotational elements in translation. 

In the ECMS algorithm, the total consumption is the total equivalent consumption, the equation ... becomes: 


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Under the constraints : 
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        fttt 0  

 

The Hamilton equation implements the Hamiltonian allowing the control variables to be derived. 
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The optimal solution of the control variables is: 

),),(),((minarg)( tstutPHtu r=   (35) 

maxmin bbb PPP         (36) 

maxmin ththth PPP     (37) 

meq(t): Total instantaneous equivalent consumption (g/s), 

mc(t): Fuel consumption (g/s), 

mb(t): Equivalent consumption of electrical energy 

Pth(t): Power of the thermal engine 

Pr(t): Power required 

u(t): Control variables 

Pb(t): Battery power 

QLHV: Minimum heat released by fuel combustion 

ƞ(t): efficiency of the heat engine 

Pb(t): Battery power 

Another expression of ECMS can be deduced from the Pontriagin Minimum Principle PMP under certain 

conditions. 

http://www.ijesrt.com/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


   ISSN: 2277-9655 

[Chapi* et al., 13(8): August, 2024]   Impact Factor: 5.164 

IC™ Value: 3.00   CODEN: IJESS7 

http: // www.ijesrt.com                 © International Journal of Engineering Sciences & Research Technology 

 [33] 

    
IJESRT is licensed under a Creative Commons Attribution 4.0 International License. 

))(),(()()),(),(()),(),(),(( tutxftttutxLtttutxH  +=       (38) 

)),(),(),(()),(),(),(( tttutxHtttutxH   ],[, 0 ftttuu           (39) 

)),(),(),(()( tttutxH
x

t 



=

•

                                 (40) 

 )),(),(),((minarg)( tttutxHtu =                (41) 

 

4.2. ECMS algorithm based on different information sources 

The equivalence factor is the most important parameter of the ECMS algorithm. It represents the efficiency of 

energy conversion of energy sources from one to another. The determination of this equivalence factor depends 

on several elements including the components of the energy transmission chains, the driving conditions, the 

driving profile, etc. As a result, there are several variants of the ECMS algorithm depending on the information 

sources enabling this equivalence factor to be determined. The diagram below provides a classification of ECMS 

algorithms according to information sources [11, 21]. 

 

 
Figure 5 : Classification of ECMS energy management strategies [11, 21] 

 

4.3.  ECMS with external information 

Advances in communication technologies between vehicles and road infrastructure allow vehicles to acquire 

information about routes and traffic conditions. This information is used to develop new approaches to the ECMS 

algorithm. These ECMS methods with external information are classified into three categories including ECMS 

with traffic information, ECMS with artificial neural networks and ECMS with vehicle speed prediction [21]. 

 

4.4. ECMS with traffic information 

The ECMS method with traffic information is an ECMS algorithm based on the prediction of road conditions and 

road traffic. CES information is typically mileage information, road terrain information, and navigation 

information. The difference between ECMS with traffic information and other prediction strategies (ECMS with 

road condition prediction, ECMS with driving style prediction and ECMS with speed prediction is the prediction 

period. The prediction period is important for the ECMS with road information (kilometers) while it is low for 

other ECMS prediction strategies (a few seconds), which favors the improvement of the degree of freedom and 

therefore the optimization of the vehicle's energy consumption. , this length of the prediction period gradually 

deteriorates the robustness of ECMS [21]. 

 

4.5. ECMS with artificial neural networks and traffic information 

Artificial neural networks are combined with ECMS algorithms to optimize the energy consumption of hybrid 

vehicles. They are used in particular to determine the optimal value of the equivalence factor from a large quantity 

of data. These data are generally the characteristics of the heat engine [29], the characteristics of the road [21], 

the characteristics of the environment [24] and the driver that can be recorded during real journeys. Obtaining 

training data from neural networks to extract optimization parameters proves to be the most difficult task. 

However, they can also be generated from normalized speed cycles [18]. 
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In [30], the authors developed comparisons between artificial neural networks and dynamic programming in 

simulations. Neural networks gave good performance to be compared with dynamic programming which is a 

reference strategy. 

 

4.6. ECMS with vehicle speed prediction 

Predicting the speed of hybrid vehicles in adaptive strategies for minimizing equivalent consumption plays an 

important role in updating the equivalence factor. By predicting short-term speed with an appropriate approach 

based on vehicle data and driving conditions, the energy management algorithm intelligently adapts the 

equivalence factor value to optimize fuel economy . of the vehicle. There are two speed prediction approaches to 

determine the equivalence factor of the A_ECMS algorithm. In one of these approaches, a reference SOC of the 

battery is set and the equivalence factor is adjusted to follow the reference SOC initially set [21, 27, 31]. In the 

other approach, the value of the equivalence factor is calculated from the range of values of the predicted speed 

or from the estimate of the energy consumption of the vehicle. The most used algorithms are artificial neural 

networks (Radial basis function networks (RBF), long short-term memory networks (LSTM)) [18], support vector 

machines (SVM) etc. 

In [32], the authors developed an adaptive ECMS algorithm using artificial neural networks. The equivalence 

factor is calculated by adopting the driving profile to predict the vehicle speed. 

In the work presented in [33], the authors used the predicted speed curve as input to an RBF neural network to 

predict the slope of the reference SOC curve.  

In [34], the authors developed a short-term vehicle speed prediction algorithm to calculate the range of the 

maximum equivalence factor. 

 

4.7. ECMS with prediction of environment and driving conditions 

Shilin Pu et al. [35], proposesa strategy for minimizing equivalent consumption based on perception of the 

environment for parallel plug-in hybrid vehicles. In This strategy, traffic characteristics information is obtained 

from an intelligent traffic system. This information makes it possible to adopt the equivalence factor of the ECMS 

strategy. The intelligent traffic system is based on a graphical convolutional network. The results obtained showed 

that the developed strategy makes it possible to achieve 7.25% fuel savings compared to the classic ECMS 

strategy. 

 Chunna Liu et al. [36] made a comprehensive analysis of the energy management strategies of plug-in hybrid 

vehicles based on the recognition of driving conditions. These strategies use driving information to optimize target 

parameters in online and simulation control. With the progress of artificial intelligence technologies, several 

intelligent methods based on are increasingly used in solving energy management problems based on the 

recognition of driving conditions including neural networks, deep learning [37] and by reinforcement [38]. The 

various results showed good fuel economy. 

 

4.8. ECMS with vehicle state of charge prediction 

M. Piras et al. [39], propose an ECMS strategy based on speed prediction and the planning the trajectory of the 

battery state of charge. Vehicle speed is predicted from driving profile data. ThereNeural network-based battery 

state-of-charge trajectory planning is done using the information provided by the mapping to plan a discharge 

trajectory from a final SOC of 30% to start of each trip for different driving cycles with initial SOC values. 

Simona Onori et al.[40], carried out a comparative simulation analysis of three methods of adapting the 

equivalence factor of the ECMS strategy for a parallel hybrid vehicle. The equivalence factor is appreciated by 

open loop around a reference value by evaluating the error between the target SOC and the instantaneous SOC. 

The results obtained prove the better performances of the three adaptation methods and the ECMS strategy. 

 

4.9. ECMS without external information 

The ECMS strategy without external information is used in the context of offline optimization where ECMS is 

combined with the global optimization algorithms. 

Global optimization methods are valid when the vehicle speed profile is known a priori. They are therefore 

reduced to use in simulation which can be used to evaluate online ordering strategies. 

ECMS with offline optimization algorithms requires the exact knowledge of integral information about driving 

conditions. This information cannot be obtained in advance under practical driving conditions. This is what limits 

ECMS with offline optimization to simulations. Optimization algorithms are divided into three categories namely 

global optimization approaches, heuristic approaches and numerical approaches. We thus distinguish ECMS with 
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heuristic approaches including GA, PSO, global optimization approaches (DP, SDP) and ECMS with numerical 

approaches [41, 42, 43]. However, rule-based methods and artificial intelligence methods can also be combined 

with ECMS and driving condition recognition or ECMS and driving style recognition [21]. 

 

5. CONCLUSION 
We have presented, in this article, a state of research on the strategy of minimizing equivalent consumption. We 

first formulated the energy management problem of hybrid vehicles and the classification of the different 

categories of its resolution methods. Then, we presented the different ECMS methods with and without external 

information as well as the associated work. 
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