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ABSTRACT 
In an effort to increase positioning accuracy in difficult circumstances, this study examined the use of machine 

learning (ML) approaches to improve GNSS ambiguity resolution. Performance indicators, such MSE, RMSE, 

MAE, and R2, were used to assess two machine learning models: K-Nearest Neighbours (KNN) and Gradient 

Boosting Decision Tree (GBDT). GBDT achieved R2 score of 1.00, the lowest MSE (0.000 meters), RMSE 

(0.0010 meters), and MAE (0.0007 meters) from the training phase, making it the best performance. With an MSE 

of 0.000 meters, an RMSE of 0.0049 meters, a MAE of 0.0031 meters, and a R2 of 1.00, KNN also demonstrated 

impressive performance. GBDT maintained its exceptional accuracy throughout the testing phase, with an MSE 

of 0.000 meters, RMSE of 0.0010 meters, MAE of 0.0007 meters, and an R2 of 1.00. KNN performed 

competitively, with an MSE of 0.000 meters, RMSE of 0.0050 meters, MAE of 0.0032 meters, and R2 of 1.00. 

These comprehensive results demonstrate the usefulness of machine learning approaches, notably GBDT and 

KNN, in greatly enhancing GNSS ambiguity resolution. Such developments are critical for overcoming the 

obstacles given by urban canyons, dense vegetation, and other obscuring settings that have previously hampered 

GNSS location technologies.  

 

KEYWORDS: GNSS, Ambiguity Resolution, Machine Learning (ML); K-Nearest Neighbours (KNN); 

Gradient Boosting Decision Tree (GBDT)  

1. INTRODUCTION 
Two kinds of direct measurements are often possible with GPS namely; the carrier phase and the pseudo-

range measurements. The carrier phase measurements, because of their low noise level, may be applied to a wide 

range of high-precision accuracy tasks such as kinematic positioning, static survey, and attitude determination. 

The carrier phase measurements, however, are unclear due to an unspecified integer cycle count. For high-

precision kinematic positioning, this well-known integer ambiguity resolution problem necessitates a laborious 

initialization procedure [1]. The integer ambiguity can be resolved in several ways. They may be broadly classified 

into two categories: motion-based ambiguity resolution [2] and search-based ambiguity resolution [3]. Motion-

based techniques must gather data for a duration that includes discernible shifts in the visible GPS constellation 

or an apparent rotation of the platform.  

Motion-based GNSS ambiguity resolution techniques leverage the dynamics of the receiver to enhance 

the resolution process. These techniques use the receiver's motion information to resolve carrier phase ambiguities. 

Examples of such methods include Kalman Filter-Based Dynamic Model [5]. Inertial Aided Ambiguity 

Resolution [6], Motion Constraints (Zero-Velocity Updates) [7], Dynamic Network RTK [8], Carrier Phase-Based 

Relative Positioning with Motion Constraints [9], Dynamic Model-Based Smoothing [10], Multi-Sensor Fusion 

[1]1, Time-Differenced Carrier Phase (TDCP) Method [12].  

The search-based approaches merely employ observations from a single epoch to determine the most 

likely combination of ambiguities, albeit occasionally the amount of noise may cause it to be incorrect. Examples 

of these methods include the LAMBDA Method (Least-squares Ambiguity Decorrelation Adjustment) [13], 

MLAMBDA (Modified Lambda) [14], C-LAMBDA (Integer Bootstrapping) [15], Integer Least-Squares (ILS) 

Method [16], Sequential Conditional Least-Squares Ambiguity Resolution (SCLAR) [17], Integer Gauss-Markov 

(IGM) Method [18], GNSS Ambiguity Search by Filtering (GASF) [19], Ambiguity Function Method (AFM) 
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[20]. The methods discussed earlier are traditional or classical. Remarkably, this study does not explore the 

traditional integer search or motion-based technique; numerous papers have thoroughly discussed this strategy, 

including [5, 6, 7, 8, 13, 14, 15, 18, 19, 20]. 

A relatively new area of research called "machine learning" (ML) uses statistical algorithms to learn from 

and analyse data to forecast or make decisions based on it. In this study, the integer in carrier phase 

measurements—which is necessary for precise positioning —can be found using machine learning (ML) 

techniques using GNSS data. This is so that the ML algorithm may understand the link between the GNSS 

measurements and the integer ambiguity by training or calibrating it using input data, such as simulated or 

experimental data. Once trained, the method may be used to find the real-time integer ambiguity [21]. 

The Integer Ambiguity Resolution problem has not been fully tackled using existing machine-learning 

techniques. The reason for such might be that most machine-learning approaches need a lot of data and a lot of 

processing power to train their algorithms. Nonetheless, a substantial amount of research supports the application 

of Machine Learning for both terrestrial and aerial navigation that employ satellite data. Neural networks, for 

example, have been used in [22] to assess geoid unevenness using GPS data. A particular kind of recurrent neural 

network called an LSTM (Long Short-Term Memory) network has been used to detect abnormalities in satellite 

data [23] and to rectify GPS signals [24]. By using data from Inertial Navigation Systems (INS) to correct for 

GPS signal losses.  

Therefore, this research aims to estimate ambiguity integer resolution using machine learning methods 

(k-Nearest Neighbours (KNN) and Gradient Boosting Decision Tree (GBDT)). Here, estimated integer ambiguity 

resolution values determined by a classical technique; Least-squares Ambiguity Decorrelation Adjustment 

(LAMBDA), is chosen to train the machine learning methods to estimate integer values. LAMBDA is selected 

because it is a well-known and often applied technique in the field of Global Navigation Satellite System (GNSS) 

ambiguity resolution. The resilience and effectiveness of this approach in resolving integer ambiguities, which is 

essential for obtaining high-precision GNSS location, have drawn special attention.  

 

2. MATERIALS AND METHODS 
Data Structure  

The dataset comprises of approximately 1000 observation epochs collected from multiple GNSS 

receivers and satellites. Each epoch includes raw GNSS observations. The data was obtained through extensive 

field measurements using high-precision GNSS receivers, ensuring a diverse and comprehensive dataset for 

training and evaluating the machine learning models.  

The dataset is labelled with known integer ambiguities, enabling supervised learning methods to 

effectively learn and predict integer ambiguities. In training the model, 70% of the data was used and for training 

the model, and the remaining 30% for testing.  

Machine Learning Methods  

Machine Learning (ML), in general, is the study and development of intelligent agents, where an 

intelligent agent is a system that examines its environment and takes actions to maximise its chances of success. 

Many real-world problems need the agent to work with incomplete or confusing facts. Using ML techniques has 

many advantages over traditional development and implementation strategies.  

These include quick access to collected knowledge (e.g. knowledge-based systems), easy-to-implement 

prototypes without deep expert knowledge (e.g., artificial neural networks (ANNs)), or systems that can learn 

(e.g., evolutionary optimisation algorithms). 

k-Nearest Neighbour (KNN) 

The KNN algorithm views the instances as points in a metric space and the descriptive qualities as its 

dimensions. The categorized instances are maintained in the training phase unprocessed. A new example is 

classified by calculating the distance (along the descriptive qualities) between it and all training examples, then 

assigning the new example to the class of the closest training example [25].  

It is also possible to use the KNN technique for regression in addition to classification. It is actually 

applicable to any kind of output. If the examples only have continuous attributes, they can be viewed as points in 

a Euclidean space, and the Euclidean distance measure can be applied. Given two examples x = (x1..., xn) and y = 

(y1...yn), their Euclidean distance is calculated in Equation (i). 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(x, y) = √∑(𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

                                                                                                                    (i) 
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It should be noted that this ignores scale variations across characteristics and does not support discrete attributes. 

Equation (ii) computes the distance using a broader definition.  

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑦) = √∑ 𝑤𝑖 × (𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

                                                                                                          (ii) 

where 𝑤𝑖  is a non-negative weight value assigned to attribute Ai and the difference between attribute values is 

defined in Equation (iii) as follows; 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑦) = {
|𝑥𝑖 − 𝑦𝑖|    if attribute 𝐴𝑖  is continues         

  0             if attribute 𝐴𝑖  discrete and 𝑥𝑖 = 𝑦𝑖

1                 otherwise                                          

                                                      (iii) 

After normalizing continuous qualities, the weights enable the varying significance of the traits to the 

job at hand to be taken into consideration. The KNN approach is more accurate and resilient when combined with 

the more generic KNN method. When estimating the target value for a new example, it uses the k closest training 

instances together with their target values. By majority voting, the new example's class is decided upon for 

categorization. According to Pugelj and Džeroski [25], the prediction in regression is the mean of the class values 

for the k training instances. 

Gradient Boosting Decision Tree (GBDT) 

Boosting algorithms combine weak learners, i.e., learners slightly better than random, into a strong 

learner in an iterative way [26]. Gradient boosting is a boosting-like algorithm for regression. Given a training 

dataset, the goal of gradient boosting is to find an approximation of the function which maps instances to their 

output values by minimizing the expected value of a given loss function. Gradient boosting builds an additive 

approximation of function as a weighted sum of functions which is expressed in Equation (iv) 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜌𝑚ℎ𝑚(𝑥)                                                                                                                             (iv) 

Where 𝜌𝑚 is the weight of the 𝑚𝑡ℎ function, ℎ𝑚(𝑥). These functions are the models of the ensemble (e.g., decision 

trees). The approximation is constructed iteratively. First, a constant approximation of 𝐹∗(𝑥) is obtained as 

expressed in Equation (v). 

𝐹0(𝑥) = arg 𝑚𝑖𝑛 ∑ 𝐿(𝑦𝑖 , 𝛼)                                                                                                                                (v)

𝑁

𝑖=1

 

Where, 𝐿(𝑦𝑖 , 𝛼) is the loss function. Subsequent models are expected to minimize as presented in Equation (vi). 

(𝜌𝑚, ℎ𝑚(𝑥)) arg 𝑚𝑖𝑛 ∑ 𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) + 𝜌ℎ(𝑥𝑖))                                                                                       (vi)

𝑁

𝑖=1

 

Model Evaluation 

Model evaluation is the process of using different evaluation metrics to understand a machine learning 

model’s performance, as well as its strengths and weaknesses. This is important because it provides the 

opportunity to assess the efficacy of a model. In this study, the following statistical evaluators were used for the 

model performance evaluation: 

R-squared (R²) 

R-squared is a measure of how well the predicted values of the model fit the actual data. It represents the 

proportion of variance in the target variable that the model can explain. R² ranges from 0 to 1, with higher values 

indicating a better fit. An R² value close to 1 indicates that the model explains a large portion of the variance in 

the data, while a value close to 0 indicates a poor fit. The mathematical equation for finding the coefficient of 

determination (R²) is expressed in Equation (vii). 

  R2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
                                                                                                                                                (vii) 

where, RSS is the sum of squared residuals (the sum of the squared differences between the predicted and actual 

values), and TSS is the total sum of squares (the sum of the squared differences between the actual values and the 

mean of the actual values). 

Root Mean Squared Error (RMSE)  

RMSE is a measure of the average error between the predicted and actual values. It is calculated by 

taking the square root of the mean of the squared differences between the predicted and actual values. RMSE is 

commonly used to evaluate the accuracy of a model’s predictions, with lower values indicating better accuracy. 

The mathematical formula is expressed in Equation (viii) as 
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RMSE = √
∑ (𝑥𝑖 − �̂� 𝑖) 2𝑁

𝑖=1

𝑁
                                                                                                                        (viii) 

 where N is the number of samples, �̂� 𝑖  is the predicted value, and 𝑥𝑖 is the actual value. 

Mean Absolute Error (MAE)  

As expressed in Equation (ix), MAE measures the average absolute difference between the predicted and 

actual values. It is calculated by taking the mean of the absolute differences between the predicted and actual 

values. MAE is another commonly used indicator of prediction accuracy, with lower values indicating better 

accuracy. 

MAE =
∑ |𝑦𝑖−𝑥𝑖|

𝑛
𝑖=1

𝑛
                                                                                                                                              (ix) 

where, 𝑦𝑖  is the predicted value, 𝑥𝑖 is the true value, and n is the number of data points. 

 

3. RESULTS AND DISCUSSION 
In this study, two (2) machine learning models (K-Nearest Neighbour (KNN) and Gradient Boosting 

Decision Tree (GBDT) were used to predict the integer ambiguity values. MATLAB R2024a was used in writing 

scripts for the models’ development and implementation. GBDT was scripted in Python and implemented 

MATLAB. Before training the models, it was necessary to normalize data to avoid reduction in network speed 

and accuracy. In this present work, the GNSS data were normalized between -1 and 1.  

Models Developed 

In this section, we discuss the parameters utilized in our K-Nearest neighbours (KNN) model, as outlined 

in Table 1, Additionally, a detailed overview of the Gradient Boosting parameters used in the study, as specified 

in Table 2. These parameters significantly influence the performance and behaviour of the models. 

KNN Model Parameters 

The KNN model used in our work considers the five nearest data points in the feature space while 

generating predictions, with Number of Neighbours (k) = 5. The selection of k achieves a balance between 

variation and bias. While a bigger k could unduly smooth out the decision boundaries (high bias), thus missing 

significant patterns, a lesser k might lead to a model that is excessively sensitive to noise (high variance). Based 

on empirical research, we found that selecting k = 5 yielded the best results on our dataset, balancing sensitivity 

to the local structure of the data with generalization. The distance between data points was calculated using the 

Euclidean distance metric.  

The Euclidean metric is a suitable choice for our data as it accurately captures the geometric separation 

between points in a continuous feature space. When features have comparable scales, this measure makes it easier 

to determine who the closest neighbours are. We used a weighting technique based on distance in our KNN model. 

With this method, neighbours are given weights depending on their inverse distance, with closer neighbours being 

given more weight. In noisy datasets where far neighbours may be less significant or even deceptive, this 

weighting strategy can improve the effect of closer neighbours on the prediction, which can result in more robust 

and accurate predictions.  

Table 1. K-Nearest Neighbours Parameters 

Model Parameter Value 

KNN 

Number of Neighbours 5 

Metric Euclidean 

Weight Distance 

Cross Validation 5-fold 

 

Gradient Boosting Decision Tree Parameters 

We used Extreme Gradient Boosting (XGBoost), which is a well-known gradient boosting method that 

is renowned for its scalability and speed. By utilizing ten trees, the model was better able to represent intricate 

patterns. With a learning rate of 1, every tree's contribution to the final model is regulated. Though careful 

adjustment is needed to avoid overfitting, a greater learning rate might result in faster convergence. Because the 

model training is repeatable, the outcomes are reliable and consistent. By limiting the complexity of the model, 

the maximum depth of each trees was set at 5. This helps prevent overfitting.  

Regularization was achieved using a LAMBDA value of one, which helped to control overfitting by 

penalizing more complicated models. The proportion of training instances utilized is one, which means that all  
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training data is used for each iteration, resulting in maximal data usage for training. Furthermore, the fractions of 

features for each split, level, and tree are set to one, implying that all characteristics are examined for each split, 

level, and tree respectively. This technique guarantees that the model considers all accessible characteristics, hence 

encouraging complete learning.  

Table 2. Gradient Boosting Decision Tree Parameters 

Model Parameters Value 

Method Extreme Gradient Boosting (XGBoost) 

Number of trees 10 

Learning rate 1 

Replicable training Yes 

Limit depth of individual trees 5 

Regularization strength Lambda: 1 

Fraction of training Instances 1 

Fraction of features for each split 1 

Fraction of features for each level 1 

Fraction of features for each tree 1 

Cross Validation  5-fold 

 

Performance of the Models Developed 

Table 4 compares the performance metrics of the machine learning (ML) models for GNSS ambiguity 

resolution during the training phase. Metrics include Mean Squared Error (MSE), Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), and coefficient of determination (R2).  

Fig. 1 and Fig. 2 show the trend of ambiguity integer values estimated by both prediction models as 

compared to the Target using the training and testing data respectively. Fig. 3 and Fig. 4 also show the trend of 

errors generated by both prediction models using the training and testing data prediction models as compared to 

the Target respectively. 

 

 
Fig. 1 Actual verse Predicted Integer Ambiguity (Train) 
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Fig. 2 Actual verse Predicted Integer Ambiguity (Test) 

 

 

 
Fig. 3 Error Propagated during Prediction (Train) 

 

 

 
Fig. 4 Error Propagated during Prediction (Test) 
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Table 4 Model Evaluation Comparison for Training 

Model MSE (m) RMSE (m) MAE (m) R2 

KNN 0.000 0.0049 0.0031 1.00 

GBDT 0.000 0.0010 0.0007 1.00 

 

GBDT exhibits the lowest error metrics among the models, with MSE, RMSE and MAE values of 0.000 

meters, 0.0010 meters, and 0.0007 meters respectively. KNN also performs well with slightly higher comparably 

but still acceptable errors (MSE: 0.000 meters, RMSE: 0.0049 meters, MAE: 0.0031 meters).  

All the models achieved a perfect R2 score of 1.00, indicating excellent fitting to the training data and 

confirming their ability to predict GNSS ambiguity resolution with high accuracy. Table 5 presents the evaluation 

results of the same ML models during the testing phase, providing insights into their generalization and 

performance on unseen data. 

 

Table 5 Model Evaluation Comparison for Testing 

Model MSE (m) RMSE (m) MAE (m) R2 

KNN 0.0000 0.0050 0.0032 1.00 

GBDT  0.0000 0.0010 0.0007 1.00 

 

Gradient Boosting Decision Tree continued to demonstrate superior performance during the testing 

phase, maintaining the lowest errors (MSE: 0.000 meters, RMSE: 0.0010 meters, MAE: 0.0007 meters). KNN 

also performs well, albeit with slightly increased errors compared to the training phase (MSE: 0.0000 meters, 

RMSE: 0.0050 meters, MAE: 0.0032 meters). The models maintained high R2 values, indicating robust predictive 

performance on the testing data.  

 

4. CONCLUSION  
Performance Analysis 

From Table 4, it is evident that GBDT outperformed k-Nearest Neighbours in terms of accuracy metrics 

such as MSE, RMSE, and MAE during the training phase. Gradient Boosting Decision Tree, in particular, 

demonstrates exceptional precision with minimal prediction errors across all evaluated metrics, indicating its 

robust capability in resolving GNSS ambiguities with high fidelity. k-Nearest Neighbours also performed 

admirably, showing slight increases in error metrics compared to GBDT but maintaining competitive accuracy 

and achieving perfect R2 score, signifying excellent model fitting. Moving to Table 5, which evaluates model 

performance on unseen testing data, GBDT again emerged as the standout performer with the lowest MSE, RMSE, 

and MAE values. This reaffirms GBDT's reliability and consistency in predicting GNSS positions accurately 

under varied conditions. k-Nearest Neighbours continued to demonstrate strong predictive power, albeit with 

slightly higher errors compared to the training phase, underscoring its capability in real-world applications. 

Implications for GNSS Applications 

The implications of these results are profound for the advancement of GNSS technology. ML-based 

approaches, particularly KNN and Gradient Boosting Decision Tree, offer substantial improvements in accuracy 

and reliability over traditional methods. Such advancements are critical for enhancing navigation systems' 

performance in challenging environments such as urban areas with high-rise buildings or regions with dense 

vegetation, where conventional GNSS techniques often struggle due to signal blockages or multipath effects. 

In conclusion, the evaluated ML models present compelling evidence of their efficacy in advancing 

GNSS ambiguity resolution. KNN and Gradient Boosting Decision Tree stand out as reliable choices for achieving 

precise and reliable position estimates, offering substantial improvements over traditional methods. These findings 

underscore the transformative potential of ML in overcoming longstanding challenges in satellite navigation, 

paving the way for more resilient and accurate positioning technologies in both civilian and military applications. 
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